在电磁出钢系统中 ,为了提高感应加热效果以实现快速出钢 ,需将固-液界面控制在感应线圈的有效加热区内。设计了模拟钢包上水口处固-液界面测量装置,考察了上水口内在高中低碳钢的出钢温度分别为1550、1600、1620℃时,铁碳合金颗粒的成分、形状、大小对固-液界面的影响规律。结果表明:使用铸铁填装料比使用铸钢填装料时固-液界面的下移量要大,并且成分的影响随着钢液温度的升高有增大的趋势;规则球形颗粒比不规则的砂形颗粒对固-液界面位置影响要大,而且固-液界面的下移量随着填装料粒径的增大而增大;选用粒径为2.0mm的铸铁颗粒作为填充料,当出钢温度为1600和1620℃时,固-液界面位置能够进入有效加热区;当出钢温度为1550℃时,使用粒径为4.0mm的铸铁颗粒做填充料时,固-液界面位置也能够进入有效加热区。
In the electromagnetic steel-tapping system, in order to improve the effect of the induction heating and realize quick steel-tapping, the solid-liquid interface position must be controlled within the induction heating effective zone. The measuring devices of the solid-liquid interface position in the ladle outlet were designed. When the tapping-steel temperature of low, mid, high carbon steel in upper nozzle were 1550, 1600, 1620℃, the influence of the FeC alloy particles′ composition, shape, size on the solid-liquid interface position were investigated. The results are summarized as follows: When the cast iron particles are used as filler, the solid-liquid interface position is higher than the cast steel particles. With the increase of steel temperature, the influence of composition is also increasing. Comparing to the irregular sand particles, the influence of the rule spherical shape particles on the solid-liquid interface position is greater. Furthermore, it is found that the solid-liquid interface moves downward volume increases accordingly with the increase of particle size; When the steel tapping temperature are 1600 and 1620℃ and 2.0mm diameter cast iron particles are used as filler, the solid-liquid interface position can be controlled within the effective heating zone, and when the steel temperature is 1550℃and 4.0mm diameter cast iron particles are used as filler, the solid-liquid interface position can also be controlled within the effective heating zone.
参考文献
[1] | |
[2] | 何玮,马涛,张铁军,李春雷. 连铸自动开浇率的提高[J].包钢科技,2003,(2): 8 .[2] Tanaka H, Nishihara R. Technology for Cleaning of Molten Steel in Tundish[J], International, Vol. 34 (1994), No. 11: 868-875.[3] 赫冀成,丸川熊净,王强.中国专利,ZL1810417,2006.[4] 谷军,宋开伟,钱觉时. 铬渣特性及解毒利用技术[J].粉煤灰,2007,(2): 32.[5] Wang T G, Li Z H. Journal of Hazardous Materials. 2004,(112) :63.[6] Jing X S,Cai M L,Yang Y T. Environmental Technology,2006,(3):33.[7] 杨卫国, 陈家军, 陈大扬, 黄云锋. 铬渣的危害与解毒技术[J].中国环保产业, 2008,(1):48.[8] 高翱,王强,金百刚,赫冀成.电磁引流系统的出钢效果分析[J].东北大学学报(自然科学版),2010,31(4):515.[9] 高翱,王强,李德军,金百刚,王凯,赫冀成. 电磁引流技术的出钢效率及其影响因素[J]. 金属学报,2010,46(5):634.[10] Gao A, Li D J ,Wang Q. Analysis of an Automatic Steel-teeming Method Using Electromagnetic Induction Heating in Slide Gate System[J], ISIJ,2010,50(12):1770.[11] 蔡开科.连续铸钢[M].北京:科学出版社,1990.[12] Matavrrcoto K. Proceeding of The Sixth International Iron and Steel Congress,1990, 3(Steelmaking I):222-229.[13] 朱兴元.中间包加热技术的现状及应用前景[J].钢铁研究, 1993,(6):43. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%