采用粉末冶金技术制备了不同Si含量(0,0.1,0.3 wt%Si)的Mo-Si合金板材,并在25,300,800和1200℃下进行了静拉伸试验,研究了试验温度对Mo-Si合金板材力学性能、断裂方式及微观组织的影响.结果表明:随试验温度升高,纯钼及Mo-Si合金板材强度明显下降,但延伸率以300℃为分界点呈现出先升后降的趋势.室温下Mo-Si合金的断裂方式为穿晶解理断裂,在300及800℃时主要为韧窝延性断裂,而1200℃时为沿晶断裂.对Mo-Si合金强化机制的分析表明,室温下的强化主要来源于弥散强化和固溶强化,而在高温时,固溶作用明显减弱,颗粒弥散和粗化晶粒为主要的强化手段.
参考文献
[1] | Meyer M;Kramer M;Akinc M .[J].Advanced Materials,1996,8:85. |
[2] | Akinc M;Kramer MJ;Thom AJ;Huebsch JJ;Cook B;Meyer MK .Boron-doped molybdenum silicides for structural applications[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1999(1/2):16-23. |
[3] | Mitra R .[J].International Materials Reviews,2006,51:13. |
[4] | Sakidja R;Perepezko J H .[J].Metallurgical and Materials Transactions,2005,36:507. |
[5] | Jain P;Kumar K S;Wiezorek J.Advanced Intermetallic-based Alloys[A].Warrendale,PA:Materials Research Society,2007:980,303. |
[6] | Jain P;Alur A P;Kumar K S .[J].Scripta Materialia,2006,54:13. |
[7] | Sturma D;Heilmaier M .[J].Materials Science and Engineering A,2007,463:107. |
[8] | Morito F;Danylenko N I;Saito H;Senkov O N.Metallic Materials with High Structural Efficiency[M].Kluwer,Dordrecht,2004:347. |
[9] | Jain P;Kumar K S .[J].Scripta Materialia,2010,62:1. |
[10] | Meyer M;Kramer M;Akinc M.[J].Advanced Materials,1996(08):85. |
[11] | 郭建亭.高温合金材料学-上册[M].北京:科学出版社,2008:88. |
[12] | 朱日彰;卢亚轩.耐热钢和高温合金[M].北京:化学工业出版社,1995:23. |
[13] | Schneider A S;Kaufmann D;Clark B G et al.[J].Physical Review Letters,2009,103(10):105501. |
[14] | 黄乾尧;李汉康.高温合金[M].北京:冶金工业出版社,2000:103. |
[15] | 涂善东.高温结构完整性原理[M].北京:科学出版社,2003:58. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%