欢迎登录材料期刊网

材料期刊网

高级检索

通过固溶前退火温度来调控2519A铝合金棒材固溶时的再结晶状态,以获得不同织构组态。采用X射线衍射分析研究了2519A铝合金棒材经150、200、300和350℃退火1 h后再经535℃×2 h固溶与直接经535℃×2 h固溶4种热处理工艺对合金织构和微观组织的影响。结果表明:2519A铝合金棒材直接经535℃×2 h固溶,挤压棒材强的〈13〉织构转变为〈110〉再结晶织构,而经上述4种温度退火和535℃×2 h固溶,织构分别演变为〈113〉,〈605〉,〈5110〉和〈7 214〉织构。退火后不固溶试样〈111〉织构和硬度值都保持不变。样品固溶发生再结晶的〈110〉织构与挤压〈13〉织构间可用40°〈111〉长大理论解释。

Annealing treatment of different temperatures before solution treatment were employed to control the recrystallization of the extruded 2519A aluminum alloy bar with 〈13〉texture before solution,in order to obtain different configurations of texture.The evolution of texture and microstructure of the samples annealed at 150,200,300 and 350 ℃ for 1 h and then solutioned at 535 ℃ for 2 h,compared with those solutioned at 535 ℃ for 2 h only,were investigated by X-ray diffraction and optical microscopy.The results indicate that the 〈13〉 texture in the 2519A aluminum alloy bar changes to the 〈110〉recrystallization texture after solution treatment at 535 ℃ for 2 h,while after annealing at 150,200,300 and 350 ℃ and then the solution treatment,it changes into 〈113〉,〈605〉,〈5 110〉 and 〈7 214〉texture,repectively.Besides,the 〈13〉texture and microhardness remains stable during the annealing before solution treatment.The relationship between the extruding 〈13〉texture and recrystallization〈110〉 texture after soulution of the samples can be explained by the 40°〈111〉growth theory.

参考文献

[1] Yu C U;Sun P L;Kao P W et al.Evolution of microstructure during annealing of a severly deformed aluminum[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2004,366:310-317.
[2] Ahlborn H;Hornbogen E;Koster U.Recrystallization mechanism and annealing texture in aluminum-copper alloy[J].Journal of Materials Science,1969(04):944-950.
[3] H. -J. Shin;H. -T. Jeong;D. N. Lee .Deformation and annealing textures of silver wire[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2000(1/2):244-253.
[4] 张德芬,左良.预回复退火对3104铝合金再结晶织构和显微组织的影响[J].石油化工高等学校学报,2004(03):62-65.
[5] 张新明,张少睿,周卓平,舒永春.钽丝的拉拔及退火织构[J].中国有色金属学报,1999(04):774-778.
[6] 毛卫民.金属材料的晶体学织构与各向异性[M].北京:科学出版社,2002:180-182.
[7] 张信钰.金属和合金的织构[M].北京:科学出版社,1976:1-9.
[8] 王赛玉,石其年.Al-Li合金挤压织构及其对性能的影响[J].吉林化工学院学报,2005(01):53-55.
[9] 石其年.二次挤压对Al-Li合金力学性能的影响[J].现代机械,2002(04):82-84.
[10] 杨觉先.金属塑性变形物理基础[M].北京:冶金工业出版社,1987:183-186.
[11] 宝磊 .Zr元素对Al-Cu-Mg-Mn合金织构影响的研究[D].沈阳航空工业学院,2007.
[12] Humphreys F J;Hatherly M.Reerystallization and Related Annealing Phenomena-Second Edition[M].Oxford:Elsevier,2004
[13] Doherty R D;Hughes D A;Humphreys F J et al.Curreent issues in reerystallization:a review[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1997,238:219-274.
[14] 毛卫民;张新明.晶体材料织构定量分析[M].北京:冶金工业出版社,1995:95-145.
[15] Dong Nyung Lee .Strain energy release maximization model for evolution of recrystallization textures[J].International Journal of Mechanical Sciences,2000(8):1645-1678.
[16] Lee Dong Nyung .The evolution of recrystallization textures from deformation textures[J].Scrlpta Metallurgica et Materialia,1995,32(10):1689-1694.
[17] Stuwe HP.;Padilha AF.;Siciliano F. .Competition between recovery and recrystallization[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1/2):361-367.
[18] 郑子樵.材料科学基础[M].长沙:中南大学出版社,2005:365-371.
[19] 刘诗安,袁东,严琦琦,张辉.Al-Mg-Si-Cu合金的热处理工艺[J].金属热处理,2005(11):55-57.
[20] 邹永恒,陶虹,徐国明,李永佳,朱浩峰.6082铝合金热处理工艺参数的研究[J].金属热处理,2007(10):71-76.
[21] 李慧中,梁霄鹏,陈明安,张新明.冷轧变形量对2519铝合金组织与力学性能的影响[J].材料热处理学报,2008(02):86-89.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%