欢迎登录材料期刊网

材料期刊网

高级检索

化学气相沉积金刚石膜是聚优异力学、电学、热学性能于一体的材料.金刚石激光打孔过程中存在特有的石墨化现象使得其温度场的分布有别于其他材料,因而,开展CVD金刚石膜激光打孔温度场研究对于理解热加工机理和进行参数优化具有重要的指导意义.本文首先建立了考虑金刚石石墨化过程的激光打孔热力学模型,根据有限元模型开展对CVD金刚石膜激光打孔有限元仿真研究,得到激光打孔温度场和金刚石石墨化的分布规律,并讨论激光能量、脉冲宽度、重复频率对单个脉冲去除量和石墨化程度的影响.仿真结果表明:单个脉冲平均去除量和石墨化程度均随着激光能量、脉冲宽度、重复频率的增加而增加,但激光能量的影响最为显著;当激光能量取0.5~1.6 J,脉冲宽度取300~800 ns,重复频率取30~60 Hz时既可以得到很高的加工效率同时又可以获得热影响区域较小的加工效果.

Chemical vapor deposited (CVD) diamond film has bright application foreground in many high-tech fields for its a series of outstanding properties. The temperature field distribution of CVD diamond film laser drilling process is different from other materials because of its diamond graphitization taking place during the process. As a result, studies on thermal field distribution have great importance on both the investigation of the processing mechanism and the optimization of drilling parameters. In this paper, a thermodynamics model considering graphitization of CVD diamond is built at first. Based on the model, FEM simulation research is conducted on laser drilling CVD diamond film. Through simulation the temperature field distribution and the degree of diamond graphitization are presented. Besides, the relation between laser drilling results (average removal rate per pulse and graphitization depth) and laser drilling parameters (laser energy, pulse width, repetition rate) is investigated. It is found that average removal rate per pulse and graphitization depth increases with the increase of laser energy, pulse width, repetition rate, with the laser energy as a key factor. Simulation results show that when choosing the drilling parameters with laser energy 0.5~1.6 J, the pulse width 300~800 ns, repetition rate 30~60 Hz, we could obtain high efficiency together with small heat-affected zone.

参考文献

[1] Liao MY.;Meng XM.;Zhou XT.;Hu JQ.;Wang ZG. .Nanodiamond formation by hot-filament chemical vapor deposition on carbon ions bombarded Si[J].Journal of Crystal Growth,2002(1/3):85-89.
[2] Odake S;Ohfuji H;Okuchi T et al.Pulsed laser processing of nano-polycrystalline diamond[J].Diamond and Related Materials,2008,10:66-69.
[3] Yongqing Fu;Hejun Du;Jianmin Miao .Patterning of diamond microstructures on Si substrate by bulk and surface micromachining[J].Journal of Materials Processing Technology,2003(1/3):73-81.
[4] 关振中;卜宪章.激光加工工艺手册[M].北京:中国计量出版社,1998
[5] Tokarev N V;Wilson J I B;Jubber M G et al.Modelling of self-limiting laser ablation of rough surfaces[J].Diamond and Related Materials,1995,4:169-176.
[6] Xu F;Zuo D W;Wang M.Study on Energy Density Needed in Nd:YAG Laser Polishing of CVD diamond thick-film[A].江苏苏州,2004:382-387.
[7] 孙立华 .陶瓷激光打孔技术研究[D].长春理工大学,2006.
[8] 徐锋 .CVD金刚石厚膜的加工技术研究[D].南京航空航天大学,2002.
[9] 陆建;倪晓武;贺安之.激光与材料的相互作用原理[M].北京:机械工业出版社,1996
[10] 宋林森,史国权,李占国.利用ANSYS进行激光打孔温度场仿真[J].兵工学报,2006(05):879-882.
[11] 张朝晖;范群波;贵大勇.ANSYS8.0热分析教程与实例解析[M].北京:中国铁道出版社,2002:11.
[12] 叶圣麟,马军山,黄鑫.激光切割脆性材料的温度场模拟[J].光学技术,2007(04):599-601,605.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%