欢迎登录材料期刊网

材料期刊网

高级检索

采用多尺度准连续介质法(简称QC方法)对单晶Ag薄膜纳米压痕过程进行模拟,研究压头宽度对纳米压痕过程中接触应力分布、位错形核临界载荷以及纳米硬度的影响,并用Rice-Thomson位错模型(简称R-T位错模型)进行分析.结果表明,纳米压痕获得的载荷.位移曲线呈现出的不连续性与位错之间的协同作用密切相关;压头尺寸对纳米压痕过程中接触应力分布、位错形核临界载荷以及纳米硬度具有明显的影响:随着压头宽度的增加,法向和切向接触应力以及纳米硬度值递减,呈现出明显的压头尺寸效应;而压头下方薄膜内位错形核临界载荷却递增,且与压头半宽度的平方根成正比.模拟结果与相应实验结果以及R-T位错模型计算结果吻合.

参考文献

[1] Siegel R W;Fougere G E .[J].Nanostructured Materials,1995,6(1-4):205.
[2] Wang Y;Chen M;Zhou F;Ma E .High tensile ductility in a nanostructured metal.[J].Nature,2002(6910):912-915.
[3] Valiev R .[J].Nature Materials,2004,3(08):511.
[4] Oliver W C et al.[J].Journal of Materials Research,1992,7(06):1564.
[5] Bhushan B et al.[J].Applied Physics Letters,1994,64(13):1653.
[6] Zimmerman J A et al.[J].Physical Review Letters,2001,87(16):165507.
[7] Nowak R et al.[J].Journal of Materials Research,1997,12(01):64.
[8] Soifer Y M et al.[J].cripta Mater,2002,47(12):799.
[9] 黎军顽,倪玉山,林逸汉,罗诚,江五贵.Al薄膜纳米压痕过程的多尺度模拟[J].金属学报,2009(02):129-136.
[10] Smith R et al.[J].Physical Review B:Condensed Matter,2003,67(24):245405.
[11] Mirshams R A et al.[J].Acta Materialia,2006,54(04):1123.
[12] 江五贵,黎军顽,苏建君,汤井伦.纳米压痕试验中压头尺寸效应的准连续介质法分析[J].固体力学学报,2007(04):375-379.
[13] Viassak J J et al.[J].Journal of the Mechanics and Physics of Solids,1994,42(08):1223.
[14] Kiely JD.;Houston JE. .Nanomechanical properties of Au (111), (001), and (110) surfaces[J].Physical Review.B.Condensed Matter,1998(19):12588-12594.
[15] Kim J Y et al.[J].Acta Materialia,2008,56(14):3338.
[16] Shim S et al.[J].Scripta Materialia,2008,59(10):1095.
[17] Tadmor E B et al.[J].Phys MagA,1996,73(06):1529.
[18] Shenoy V B et al.[J].Journal of the Mechanics and Physics of Solids,1999,47(03):611.
[19] 倪玉山,王华滔.准连续介质方法及其应用[J].机械工程学报,2007(08):101-108.
[20] Shenoy V B et al.[J].Journal of the Mechanics and Physics of Solids,2000,48(04):649.
[21] Tadmor E B et al.[J].Journal of Materials Research,1999,14(06):2233.
[22] 黎军顽,江五贵.基于准连续介质法预测薄膜材料纳米硬度和弹性模量[J].金属学报,2007(08):851-856.
[23] Dupont V et al.[J].Acta Materialia,2008,56(20):6013.
[24] Jin J et al.[J].Acta Materialia,2008,56(16):4358.
[25] Prudhomme S et al.[J].INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING,2006,4(5-6):647.
[26] Heino P.;Kaski K.;Hakkinen H. .Molecular-dynamics study of mechanical properties of copper[J].Europhysics Letters,1998(3):273-278.
[27] Voter A E.The Embedded Atom Method,Intermetallic Compounds:Principles and Applications[M].New York:John Wiley and Sons,Inc,1994:77.
[28] Liu Y et al.[J].Journal of the Mechanics and Physics of Solids,2005,53(12):2718.
[29] Chen P;Shen YP .Nanocontact between BCC tungsten and FCC nickel using the quasicontinuum method[J].International Journal of Solids and Structures,2008(24):6001-6017.
[30] Gouldstone A et al.[J].Acta Materialia,2000,48(09):2277.
[31] Van Vliet K J et al.[J].Physical Review B:Condensed Matter,2003,67(10):104105.
[32] Yu H H et al.[J].Journal of the Mechanics and Physics of Solids,2007,55(03):489.
[33] Rice R J R et al.[J].Philosophical Magazine,1974,29(01):73.
[34] Johnson K L.Contact Mechanics[M].Cambridge:Cambridge University Press,1985
[35] Wang H T et al.[J].Transactions of Nonferrous Metals Society of China,2008,18(05):1164.
[36] Ma Q.;Clarke DR. .SIZE DEPENDENT HARDNESS OF SILVER SINGLE CRYSTALS[J].Journal of Materials Research,1995(4):853-863.
[37] Abu AI-Rub R K et al.[J].International Journal of Plasticity,2004,20(06):1139.
[38] 王华滔,秦昭栋,倪玉山,张文.不同晶体取向下纳米压痕的多尺度模拟[J].物理学报,2009(02):1057-1063.
[39] Nix WD.;Gao HJ. .Indentation size effects in crystalline materials: A law for strain gradient plasticity[J].Journal of the Mechanics and Physics of Solids,1998(3):411-425.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%