以硅改性的氧化铝为载体,用反相微乳液法合成了负载型的CeO2-ZrO2固溶体(Ce-Zr-O/Si-Al2O3),用低温氮吸附、X射线衍射、程序升温还原、拉曼光谱和x射线光电子能谱等方法对Ce-Zr-O/Si-Al2O3的织构性能、热稳定性和储放氧性能等进行了表征.结果表明,负载后的CeO2-ZrO2晶相与负载前相比没有变化,但热稳定性和在低温下的放氧能力及总储氧量明显提高.作为甲烷燃烧Pd催化剂的载体,Ce-Zr-O/Si-Al2O3的性能明显优于CeO2-ZrO2,Si-Al2O3和机械混合物CeO2-ZrO2+Si-Al2O3.使用0.2%Pd/10%Ce-Zr-O/Si-Al2O3为催化剂时,甲烷90%转化率时的温度仅为345℃,比负载在其它载体上的Pd催化剂低175℃.
CeO2-ZrO2 solid solution was supported on Si-modified alumina(Ce-Zr-O/Si-Al2O3)by the reverse microemulsion method.Its structure,thermal stability,and oxygen release capacity were studied by N2 adsorption,XRD,TPR,Raman spectroscopy,and XPS.The crystalline phase of Ce-Zr-O on Si-Al2O3 was the same as that of unsupported CeO2-ZrO2(Ce-Zr-O),but its thermal stability,oxygen release capacity at low temperature,and total oxygen storage capacity were higher.As the support of a Pd catalyst for methane combustion,Ce-Zr-O/Si-Al2O3 had better properties than Ce-Zr-O,Si-Al2O3,and the mixture of Ce-Zr-O+Si-Al2O3.Using the 0.2% Pd/10%Ce-Zr-O/Si-Al2O3 catalyst,T90 for methane combustion was only 345℃,which was 175℃ lower than that of Pd supported on other supports.
参考文献
[1] | Horiuchi T;Osaki T;Sugiyama T;Masuda H,Horio M,Suzuki K,Mori T,Sago T .[J].Journal of the Chemical Society,Faraday Transactions,1994,90(17):2573. |
[2] | Fernóndez-García M;Martínez-Arias A;Iglesias-Juez A;Hungría A B Anderson J A Conesa J C Soria J .[J].Applied Catalysis B:Environmental,2001,31(01):39. |
[3] | González-Velasco J R;Gutiérrez-Ortiz M A;Marc J-L;Botas J A González-Marcos M P Blanchard G .[J].Applied Catalysis B:Environmental,1999,22(03):167. |
[4] | Pérez-Osorio G;Castillón F;Simakov A;Tiznado H Zaera F Fuentes S .[J].Applied Catalysis B:Environmental,2007,69(3-4):219. |
[5] | Yue B H;Zhou R X;Wang Y J;Zheng X M .[J].Journal of Molecular Catalysis A:Chemical,2005,238(1-2):241. |
[6] | Rossignol S;Kappenstein C .[J].International Journal of Inorganic Materials,2001,3(01):51. |
[7] | Praserthdam P;Inoue M;Mekasuvandumrong O;Thanakulrangsan W Phatanasri S .[J].Inorganic Chemistry Communications,2000,3(11):671. |
[8] | Horiuchi T.;Osaki T.;Sugiyama T.;Suzuki K.;Mori T.;Chen L. .A novel alumina catalyst support with high thermal stability derived from silica-modified alumina aerogel[J].Catalysis Letters,1999(2/3):89-92. |
[9] | Horiuchi T.;Sugiyama T.;Suzuki K.;Mori T.;Osaki T. .Maintenance of large surface area of alumina heated at elevated temperatures above 1300 degrees C by preparing silica-containing pseudoboehmite aerogel[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2001(3):187-198. |
[10] | Shigapov A N;Graham G W;McCabe R W;Plummet H K Jr .[J].Applied Catalysis A:General,2001,210(1-2):287. |
[11] | Inoue M;Kominami H;Inui T .[J].Journal of the American Ceramic Society,1992,75(09):2597. |
[12] | Inoue M;Tanino H;Kondo Y;Inui T .[J].Journal of the American Ceramic Society,1989,72(02):352. |
[13] | Zarur AJ.;Ying JY.;Hwu HH. .Reverse microemulsion-mediated synthesis and structural evolution of barium hexaaluminate nanoparticles[J].Langmuir: The ACS Journal of Surfaces and Colloids,2000(7):3042-3049. |
[14] | Ozawa M. .Role of cerium-zirconium mixed oxides as catalysts for car pollution: A short review[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,1998(0):886-890. |
[15] | Gandhi H S;Shelef M .[J].Studies in Surface Science and Catalysis,1987,30:199. |
[16] | Kim G .[J].Industrial and Engineering Chemistry:Product Research and Development,1982,21(02):267. |
[17] | Suhonen S;Valden M;Hietikko M;Laitinen R Savimaki A Hairkonen M .[J].Applied Catalysis A:General,2001,218(1-2):151. |
[18] | Schulz H;Stark W J;Maciejewski M;Pratsinis S E Balker A .[J].Journal of Materials Chemistry,2003,13(12):2979. |
[19] | Fernández-Garcia M;Martinez-Arias A;Guerrero-Ruiz A;Conesa J C Soria J .[J].Journal of Catalysis,2002,211(02):326. |
[20] | Chen M;Zhang P Zh;Zheng X M .[J].Catalysis Today,2004,93-95:671. |
[21] | Wang XH;Lu GZ;Guo Y;Wang YS;Guo YL .Preparation of high thermal-stabile alumina by reverse microemulsion method[J].Materials Chemistry and Physics,2005(2/3):225-229. |
[22] | 王晓红,郭耘,卢冠忠,郭杨龙,王筠松,张志刚,刘晓晖.Effect of Preparation Method on Surface Area and Crystalline Form of CeO2-ZrO2 Solid Solution[J].稀土学报(英文版),2004(06):763-765. |
[23] | Wang X H;Guo Y;Lu G Zh;Hu Y Jiang L Zh Guo Y L Zhang Zh G .[J].Catalysis Today,2007,126(3-4):369. |
[24] | Wang X H;Lu G Zh;Guo Y;Xue Y Y Jiang L Zh Guo Y L Zhang Zh G .[J].Catalysis Today,2007,126(3-4):412. |
[25] | Fernández-García M;Martínez-Arias A;Hungria A B;Iglesias-Juez A Conesa J C Soria J .[J].Physical Chemistry Chemical Physics,2002,4(11):2473. |
[26] | Kim D J;Jung H J .[J].Journal of the American Ceramic Society,1993,76(08):2106. |
[27] | Moulder J F;Stickle W F;Sobol P E;Domben K D.Handbook of X-Ray Photoelectron Spectroscopy[M].Eden Prairie:Perkin-Elmer Corporation,Physical Electronics Division,1993:108,119. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%