欢迎登录材料期刊网

材料期刊网

高级检索

用标准单辊甩带技术在大气环境下制备Fe73.5Si13.5-xGexB9Cu1Nb3(x=3,6)非晶条带,分别在470℃、510℃、550℃和590℃对非晶条带进行真空等温退火1h后,在非晶基体中形成了纳米晶相.用X射线衍射(XRD),透射电镜(TEM)和差示扫描量热法(DSC)测量研究了快淬态和热处理后样品的结构和结晶动力学.基于差热分析的数据,使用Kissinger,Ozawa和Augis-Bennett模型计算了非晶条带的结晶激活能,利用Johnson-Mehl-Avrami(JMA)方程计算了非晶条带初始结晶的局域Avrami因子n.局域Avrami因子n随晶化体积分数α的显著变化说明,非晶条带非等温初始结晶的机理在不同的晶化阶段是不同的.晶化初期的机理是扩散控制的三维形核和晶粒生长的整体晶化,形核速率逐渐减小;晶化中后期为一维形核和生长的表面晶化过程,形核速率近似为零.基于XRD和TEM测量结果,分别在510℃、550℃和590℃真空等温退火1h后,在Fe735Si13.5-xGexB9Cu1Nb3(x=3,6)非晶条带中析出的α-Fe (Si,Ge)相的平均晶粒尺寸D小于15nm.

参考文献

[1] Y.Yoshizawa,S.Oguma,K.Yamauchi,New Fe-based soft magnetic alloys composed of ultrafine grain structure,J.Appl.Phys.,64,6044(1988)
[2] G.Herzer,Magnetization process in nanocrystalline ferromagnets,J.Mater.Sci.Eng.A,133,1(1991)
[3] G.Herzer,Grain structure and magnetism of nanocrystalline ferromagnets,J.1EEE Trans.Magn.,25,3327(1989)
[4] N.Chau,N.X.Chien,N.Q.Hoa,P.Q.Niem,N.D.Tho,V.V.Hiep,Investigation of nanocomposite materials with ultrasoft and high performance hard magnetic properties,J.Magn.Magn.Mater.,282,174(2004)
[5] N.Chau,N.Q.Hoa,N.D.The,L.V.Vu,The effect of Zn,Ag and Au substitution for Cu in Finemet on the crystallization and magnetic properties,J.Magn.Magn.Mater.,303,e415(2006)
[6] D.Muraca,J.Moya,V.J.Cremaschi,H.R.Sirkin,Amorphous and nanocrystalline fraction calculus for the Fe73.5Si3.5Ge10Nb3B9Cu1 alloy,Physica B,398,325(2007)
[7] D.Muraca,V.Cremaschi,J.Moya,H.Sirkin,FINEMET type alloy without Si:Structure and magnetic properties,J.Magn.Magn.Mater.,320,1639(2008)
[8] D.Muraca,V.Cremaschi,J.Moya,H.Sirkin,Structure and magnetic correlation of Finemet alloys with Ge addition,J.Magn.Magn.Mater.,320,810(2008)
[9] J.A.Moya,V.J.Cremaschi,H.Sirkin,From Fe3Si towards Fe3Ge in Finemet-like nanocrystalline allys:Mossbauer spectroscopy,Physica B,389,159(2007)
[10] J.A.Moya,Nanocrystals and amorphous matrix phase studies of Finemet-like alloys containing Ge,J.Magn.Magn.Mater.,322,1748(2010)
[11] V.Cremaschi,G.Sanchez,H.Sirkin,Magnetic properties and structure evolution of FINEMET alloys with Ge addition,Physica B,354,213(2004)
[12] W.A.Johnson,R.F.Mehl,Reaction kinetics in processes of nucleation and growth,Trans.AIME,135,416(1939)
[13] V.Cremaschi,A.Saad,M.J.Ramos,H.Sirkin,Magnetic and structural characterization of Finemet type alloys with addition of Ge and Co,Journal of Alloys and Compounds,369,101(2004)
[14] J.S.Blazquez,S.Roth,A.Conde,Effect of partial substitution of Ge for B on the high temperature response of soft magnetic nano-crystalline alloys,Journal of Alloys and Compounds,395,313(2005)
[15] LI Yang,LU Wei,YAN Biao,Crystallization behavior of Finemet amorphous alloy,Journal of Materials Science and Engineering,24(1),132(2006) (黎阳,陆伟,严彪,FINEMET合金晶化行为的DSC研究,材料科学与工程学报,24(1),132(2006))
[16] H.E.Kissinger,Reaction kinetics in differential thermal analysis,Anal.Chem.,29,1702(1957)
[17] T.Ozawa,A new method of analyzing thermagravimetric data,Bull.Chem.Soc.(Japan),35,1881(1965)
[18] J.A.Augis,J.E.J.Bennett,Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method,Them.Anal.,13,283 (1978)
[19] W.Lu,B.Yan,W.H.Huang,Complex primary crystallization kinetics of amorphous Finemet alloy,J.Non-Cryst.Solids,351,3320 (2005)
[20] M.H.Phan,H.X.Peng,M.R.Wiscom,Effect of annealing on the microstructure and magnetic properties of Fe-based nanocomposite materials,Composites,Part A,37,191(2006)
[21] J.M.Christian,The Theory of Transformations in Metals and Alloys,2nd Ed.,New York:Pergamon,(1975)
[22] G.Ghosh,M.Chandrasekaran,L.Delaey,Isothermal crystallization kinetics of Ni24Zr76 and Ni24(Zr-X)76 amorphous alloys,Acta Metall.Mater.,39,925(1991)
[23] N.X.Sun,K.Zhang,X.H.Zhang,X.D.Liu,K.Lu,Nanocrystallization of amorphous Fe33Zr67 alloy,Nanostmct.Mater.,7,637(1996)
[24] K.Lu,X.D.Liu,F.H.Yuan,Synthesis of the NiZr2 intermetallic compound nanophase materials,Physica B,217,153(1996)
[25] N.X.Sun,X.D.Liu,K.Lu,An explaination to the anomalous Avrami exponent,Scr.Mater.,34,1201(1996)
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%