The wear properties of ultrafine-grained (UFG) Cu samples of different purities were investigated in comparison with the coarse-grained (CG) Cu. The UFG Cu samples, prepared by means of plastic deformation via quasi-static compression, exhibit an enhanced wear resistance relative to the CG Cu samples. For both the UFG and the CG Cu samples, wear volumes increase at higher purities. A steady state worn subsurface structure was formed in each sample after sliding for 60 min, consisting of a heavily deformed nanostructured mixing layer (NML) on top of a continuous dynamic recrystallization (DRX) layer. A pronounced correlation is identified that wear volume increases monotonically with an increasing grain size of the DRX layer. The impurity level of the Cu samples has an obvious in°uence on the DRX grain sizes, which in turn determines the wear resistance of the Cu samples.
参考文献
[1] | |
[2] |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%