采用高效节能、环境友好的冶金法提纯多晶硅是光伏产业发展的重要途径之一,具有很强的中国特色.该方法通常结合2个或2个以上冶金步骤实现工业硅的提纯,这些步骤包括湿法提纯、合金法提纯、定向凝固提纯、真空熔炼提纯等.合金法提纯具有操作温度低、设备实现简单、杂质去除效果好等优点,已成为研究的热点.概述了铝硅合金体系精炼提纯原理、提纯过程及提纯效果,总结了近年来采用该方法提纯多晶硅的研究进展,并对其发展进行了预测.
参考文献
[1] | Loong L H;Varbanov P S;Klemes J J .Regional renewable energy and resource plaiming[J].Applied Energy,2011,88(02):545. |
[2] | 庞爱锁,潘淼,郭生士,吴正云,陈朝.金属硅的酸洗和氧化提纯[J].厦门大学学报(自然科学版),2009(04):543-546. |
[3] | Santos I C;Goncalves A P;Santos C et al.Purification of metallurgical grade silicon by acid leaching[J].Hydrometallurgy,1990,23(2-3):237. |
[4] | 董志远;赵友文;田宝利 .酸洗除杂方法、设备及多晶硅提纯方法、系统[P].中国,CN101671026,2010. |
[5] | Johnston, M.D.;Barati, M. .Distribution of impurity elements in slagsilicon equilibria for oxidative refining of metallurgical silicon for solar cell applications[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,2010(12):2085-2090. |
[6] | Johnston, M.D.;Barati, M. .Effect of slag basicity and oxygen potential on the distribution of boron and phosphorus between slag and silicon[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2011(3):970-975. |
[7] | WuJ J;MaW H;DaiYN.Removing boron from metallurgical grade silicon by vacuum oxidation refining[A].Liaoning,2007 |
[8] | Khattak C P;Joyce D B;Schmid F .Processing of MG silicon for photovoltaic application[J].Proc Symp Mater P New Processing Techn Photovoltaics Proc,1983,83(11):478. |
[9] | 姜大川,谭毅,董伟,王强,彭旭,李国斌.电子束束流密度对冶金硅中杂质磷的影响[J].材料工程,2010(03):18-21. |
[10] | 姜大川,董伟,谭毅,王强,彭旭,李国斌.电子束熔炼多晶硅对杂质铝去除机制研究[J].材料工程,2010(08):8-11. |
[11] | J.C.S. Pires;J. Otubo;A.F.B. Braga .The purification of metallurgical grade silicon by electron beam melting[J].Journal of Materials Processing Technology,2005(1):16-20. |
[12] | Ganesh RB;Matsuo H;Kangawa Y;Arafune K;Ohshita Y;Yamaguchi M;Kakimoto K .Directional solidification of multicrystalline silicon using the accelerated crucible rotation technique[J].Crystal growth & design,2008(7):2525-2527. |
[13] | 钟根香,周浪,万跃鹏.太阳能多晶硅锭定向凝固技术进展[J].材料导报,2008(09):91-94,105. |
[14] | 魏奎先,马文会,戴永年,杨斌,刘大春.冶金级硅真空蒸馏除磷研究[J].中山大学学报(自然科学版),2007(z1):69-71. |
[15] | Dawless R K;Troup R L;Meier D L et al.Production of extreme-purity aluminum and silicon by fractional crystallization processing[J].Journal of Crystal Growth,1988,89:68. |
[16] | Raymond A;Kramer;Lower B et al.Phosphorous removal in silicon purification[P].US,4312849,1982. |
[17] | Robert K;Dawless;Monroeville et al.Boron removal in silicon purification[P].US,4312848,1982. |
[18] | 郑智雄;张伟娜;林霞 等.采用析释提纯技术的太阳能级高纯硅的制备方法[P].中国,CN200910306736,2010. |
[19] | Juneja J M;Mukherjee T K .A study of the purification of metallurgical grade silicon[J].Hydrometallurgy,1986,16(01):69. |
[20] | Dawless R K;Monroeville .Silicon purification method using copper or copper-aluminum solvent metal[P].US,4822585,1989. |
[21] | Aleksandar M. Mitrasinovic;Torstein A. Utigard .Refining Silicon for Solar Cell Application by Copper Alloying[J].Silicon,2009(4):239–248. |
[22] | Esfahani S .Solvent refining of metallurgical grade silicon using iron[D].Toronto:University of Toronto,2010. |
[23] | 赵立新,王志,郭占成,李成义.低温净化冶金硅工艺[J].中国有色金属学报(英文版),2011(05):1185-1192. |
[24] | Nakajima K;Usami N.Crystal growth of Si for solar cells[M].Beilin:Springer-Verlag,2009 |
[25] | Murray J;Mcalister A .The Al-Si (aluminum-silicon) system[J].Journal of Phase Equilibria,1984,5(01):74. |
[26] | Ghoshtagore R N .Dopant diffusion in silicon.Ⅲ.Acceptors[J].Physical Review B:Condensed Matter,1971,3(08):2507. |
[27] | 冀明,董伟,谭毅,孙世海,李国斌.真空感应熔炼和定向凝固制备多晶硅中铝的除杂[J].材料研究学报,2010(04):373-377. |
[28] | 梅向阳,马文会,吕国强,魏奎先,戴永年.真空定向凝固法去除硅中铁铝杂质的研究[J].铸造技术,2010(11):1432-1434. |
[29] | 魏奎先,马文会,戴永年,杨斌,徐文婷,刘大春.提纯工业硅除铝的实验研究[J].功能材料,2007(12):2087-2089. |
[30] | 王强,董伟,谭毅,姜大川,彭旭,李国斌.电子束熔炼去除冶金级硅中磷、铝、钙的研究[J].功能材料,2010(z1):144-147. |
[31] | Yoshikawa T;Morita K.Thermodynamics on the solidification refining of silicon with Si-Al melts[A].San Francisco CA,2005 |
[32] | Takeshi Yoshikawa;Kazuki Morita .Removal of phosphorus by the solidification refining with Si-Al melts[J].Science and technology of advanced materials,2003(6):531-537. |
[33] | TAKESHI YOSHIKAWA;KAZUKI MORITA .Removal of B from Si by Solidification Refining with Si-Al Melts[J].Metallurgical and Materials Transactions, B. Process metallurgy and materials processing science,2005(6):731-736. |
[34] | Yoshikawa T;Morita K .Continuous solidification of Si from Si-Al melt under the induction heating[J].Curr Adv Mater Processes,2007,20:48. |
[35] | Yuki Nishi;Youngjo Fang;Kazuki Morita .Control of Si Crystal Growth during Solidification of Si-Al Melt[J].Materials transactions,2010(7):1227-1230. |
[36] | Xin Gu;Xuegong Yu;Deren Yang .Low-cost solar grade silicon purification process with Al-Si system using a powder metallurgy technique[J].Separation and Purification Technology,2011(1):33-39. |
[37] | TAKESHI YOSHIKAWA;KENTARO ARIMURA;KAZUKI MORITA .Boron Removal by Titanium Addition in Solidification Refining of Silicon with Si-Al Melt[J].Metallurgical and Materials Transactions, B. Process metallurgy and materials processing science,2005(6):837-842. |
[38] | Obinata I;Komatsu N .The 871st report of the research institute for iron,steel and other metals[R].,1957. |
[39] | Gumaste J L;Mohanty B C;Galgali R K et al.Solvent refining of metallurgical grade silicon[J].Solar Energy Materials,1987,16(04):289. |
[40] | LIXIN ZHAO;ZHANCHENG GUO;ZHI WANG .Removal of Low-Content Impurities from Al By Super-Gravity[J].Metallurgical and Materials Transactions, B. Process metallurgy and materials processing science,2010(3):505-508. |
[41] | Park J P;Sassa K;Asai S .Improvement of wear-resistance in hyper-eutectic Al-Si alloy by surface concentration of primary silicon using electromagnetic force[J].Journal of the Japan Institute of Metals,1995,59(07):733. |
[42] | 金云学,张虎,曾松岩,高文理,张二林.Ti-Al-B合金中铝含量对硼化物的存在方式和形态的影响[J].材料科学与工艺,2001(03):285-289. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%