利用光学显微镜和透射电子显微镜以及光电子能谱分析方法,研究了元素V和Nb对12%Cr铁素体耐热钢的微观组织和析出相的形态和分布的影响。结果表明:添加V和Nb的铁素体钢具有更窄的马氏体板条组织;附于MX型碳氮化物生长的M23C6碳化物呈细小的针状或短棒状析出,而单独析出的M23C6尺寸较大,呈椭圆形。这些组织上的优化和MX型碳氮化物的弥散析出有效抑制了回火马氏体组织的回复和再结晶,提高了铁素体钢的蠕变抗力。
The effect of trace amounts of vanadium and niobium on the microstructure and the distribution and morphology of precipitates of 12%Cr ferritic heat resistant steel was studied by the optical microscopy (OM) and the transmission electron microscopy (TEM) equipped with energy dispersive X-ray spectroscopy (EDS). The testing results illuminated that the ferrite steel with V and Nb holds a narrow martensite lath structure. It is also found that the M23C6-type carbides combined with the MX-type carbonitrides, have fine small particle size and precipitate along all sorts of boundaries and in the δ-ferrite phase in the manner of acicular or clubbed shape while the M23C6-type carbides singly precipitated present a rectangle or ellipse shape with a relative larger particle size. The above optimized structure and the dispersed strengthening from MX-type carbinitrides itself restrain the recovery and recrystallization of tempered martensite structure, and thus improve the creep-resistant of ferrite steel.
参考文献
[1] | |
[2] | CHOUDHARY B K, PHANIRAJ C., BHANU S, et al. Creep Deformation Behaviour and Kinetic Aspects of 9Cr-1Mo Ferritic Steel [J]. ISIJ International, 2001, 41: S73-S80.[2] Sawada K, Kubo K, Abe F. Creep behavior and stability of MX precipitates at high temperature in 9Cr-0.5Mo-1.8W-VNb steel [J]. Material. Sci. Eng, 2001, A319–321:784.[3] Yamada K, Igarashi M, Muneki S et al. Creep properties affected by morphology of MX in High-Cr Ferritic Steels [J]. ISIJ International, 2001, 41:S116-S120. [4] 胥永刚, 李宁, 蔡光军, 等. 铬、铌和钒对9Cr-1Mo钢焊缝回火组织性能的影响 [J]. 焊接学报,2002, 23(5): 49.[5] Hamada K., Tokuno K., Tomita Y et al. Effects of precipitate shape on high temperature strength of modified 9Cr-1Mo steels. ISIJ International, 1995, 35: 86.[6] Taneike. M, Kondo, Morimoto T. Accelerated coarseing of MX Carbonitrides in 12%Cr steels during creep deformation [J]. ISIJ International, 2001, 41: S111-S115.[7] Sakasegawa H, Hirose T, Kohyama A, et al. Microstructural stability of reduced activation ferritic martensitic steels under high temperature and stress cycling [J]. Fusion Eng. Design, 2002, 61-62:671.[8] Dimmler G, Weinert P, Kozeschnik E, et al Quantification of the Laves phase in advanced 9-12% Cr steels using a standard SEM [J]. Mater. Character, 2003, 51:341.[9] Hosoi Y, Wade N, Kunimitsu S,et al Precipitation behaviour of Laves phase and it’s effect on toughness of 10Cr – 2Mo ferritic-martensitic steel [J]. J Nucl Mater 1986, 461:141.[10] DANIEL S H K, Hald J. On the nucleation anddissolution process of Z-phase Cr (V, Nb) N in mar2tensitic 12 %Cr steels [J] . Mater Sci Eng , 2009, 505A : 169. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%