欢迎登录材料期刊网

材料期刊网

高级检索

目的:研制一种无毒、高效的水基防锈剂。方法以植酸、聚天冬氨酸为主要成分,添加钼酸钠和苯甲酸钠作为助剂,筛选出聚乙二醇和聚乙烯醇作为高分子成膜剂,配制防锈剂。通过单因素实验和正交试验确定防锈剂的最佳配方,并与亚硝酸盐型防锈剂进行防锈效果对比。结果植酸与聚天冬氨酸有较好的复配作用,助剂和高分子成膜剂的存在可有效增强防锈膜的耐蚀性。防锈剂最佳配方为:植酸60 mL/L,聚天冬氨酸25 mL/L,钼酸钠6 g/L,苯甲酸钠22 g/L,聚乙二醇4 g/L,聚乙烯醇5 g/L。该防锈剂成膜后,平均CuSO4点滴时间达75 s,耐盐水浸泡23 h,耐中性盐雾28 h,防锈效果良好。结论无毒型防锈剂的防锈效果与亚硝酸盐型相比,存在一定差距,但其不含有毒物质,值得推广使用。

Objective To develop a new nontoxic and efficient water-based rust inhibitor. Methods Phytic acid and polyaspartic acid were used as the main components of rust inhibitor, in which sodium molybdate and sodium benzoate were added as promoter, and the polymer film forming agents polyethylene glycol and polyvinyl alcohol were screened. The optimal formulation was deter-mined via single factor experiment and orthogonal test, and the corrosion resistance was contrasted with nitrite rust inhibitor. Results The longer copper sulfate spot time showed the better synergistic effect between phytic acid and polyaspartic acid. The pro-moters and polymer film forming agents effectively enhanced the corrosion resistance of antirust film. The optimal formulation of rust inhibitor was 60 ml/L of phytic acid, 25 ml/L of poly aspartic acid, 6 g/L of sodium molybdate, 22 g/L of sodium benzoate, 4 g/L of polyethylene glycol, 5 g/L of polyvinyl alcohol;the average copper sulfate spot time was 75 s, the salt solution immersion re-sistant time was 23 h, and the neutral salt spray test time was 28 h. Under the above conditions, excellent antirust performance was achieved. Conclusion The new nontoxic and water-based rust inhibitor was worth promoting despite the little gap between the two types of rust inhibitor in rust resistance.

参考文献

[1] 张迎平,刘兰轩,杨承凤,刘秀生.一种环保型水基防锈剂的性能研究[J].材料保护,2012(10):56-58.
[2] 陈泽民,路品,苏艳丽,何敏.钢铁水基防锈剂的研制及其性能[J].材料保护,2011(06):58-59.
[3] 郭侃,刘慧丛,王培鹏,李卫平.一种用于工序间防锈的含有稀土成分的硅烷水溶液[J].表面技术,2010(06):101-103.
[4] 范洪波,胡勇有.一种新型水基防锈剂的研究[J].新技术新工艺,2004(11):62-64.
[5] 李志林,韩立兴,陈泽民.水基防锈剂的研究进展[J].表面技术,2006(05):51-53.
[6] 周和平.植酸在金属表面处理中的应用[J].电镀与环保,2003(02):23-25.
[7] 赵地顺,刘会茹,徐智策,庞登甲,王春芳.植酸盐缓蚀剂及其机理研究[J].高等学校化学学报,2005(02):334-336.
[8] NOTOYA T;OTIENO-ALEGO V;SCHWEINSBERG D P .Corrosion and Polarization Behavior of Copper in Domestic Water in the Presence of Ca,Mg and Na-salts of Phytic Acid[J].Corrosion Science,1995,37(01):55-65.
[9] A. Bebot-Brigaud;C. Dange;N. Fauconnier;C. Gerard .~(31)P NMR, potentiometric and spectrophotometric studies of phytic acid ionization and complexation properties toward Co~(2+), Ni~(2+), Cu~(2+), Zn~(2+) and Cd~(2+)[J].Journal of Inorganic Biochemistry: An Interdisciplinary Journal,1999(1):71-78.
[10] Liu JR;Guo YN;Huang WD .Study on the corrosion resistance of phytic acid conversion coating for magnesium alloys[J].Surface & Coatings Technology,2006(3/4):1536-1541.
[11] LOUIS L;GARY J .Continuous Process for Polyaspatic Acid Synthesis[P].US,5610264,1997-03-11.
[12] 霍宇凝,蔡张理,赵岩,陆柱.聚天冬氨酸及其与锌盐的复配物对碳钢缓蚀性能的影响[J].华东理工大学学报(自然科学版),2001(06):669-672.
[13] 孙鹏程,任晓光,荆雷.多种缓蚀剂的复配对10号碳钢在酸性体系中的缓蚀作用研究[J].石油炼制与化工,2010(02):69-72.
[14] 高辉庆,贺涛.绿色缓蚀阻垢剂的研究进展[J].精细与专用化学品,2006(09):13-15,28.
[15] 王秋景,唐耀胜.弱碱性介质中钼酸盐系缓蚀剂的研制[J].电镀与精饰,2002(06):22-26.
[16] 韩立兴 .金属水基防锈剂的制备与应用[D].河北大学,2007.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%