欢迎登录材料期刊网

材料期刊网

高级检索

采用转移矩阵的方法研究了由左手材料和右手材料交替组成的康托结构的透射谱,发现相比于全部由右手材料组成的康托多层结构的透射谱,其透射峰的个数减少,但是随着康托结构代数的增加,这种现象逐渐消失.在康托多层结构中,场强的分布呈现出与结构相似的现象.本文同时研究分析了康托结构中的零有效折射率带隙.

参考文献

[1] Veselago V G .The electrodynamics of substances with simultaneously negative values of and[J].Soviet Physics Uspekhi,1968,10(04):509-514.
[2] Li J S;Zhou L;Chan C T et al.Photonic band gap from a stack of positive and negative index materials[J].Physical Review Letters,2003,90(08):083901(1-4).
[3] Haitao Jiang;Hong Chen;Hongqiang Li;Yewen Zhang;Shiyao Zhu .Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials[J].Applied physics letters,2003(26):5386-5388.
[4] Li J;Zhao DG;Liu ZY .Zero-n(-) photonic band gap in a quasiperiodic stacking of positive and negative refractive index materials[J].Physics Letters, A,2004(5/6):461-468.
[5] He H;Zhang WY .Transmission spectra in symmetrical Fibonacci superlattices composed of positive and negative refractive index materials[J].Physics Letters, A,2006(3):198-204.
[6] Kohmoto M;Sutherland B;Iguchi K .Localization in optics:quasiperiodic media[J].Physical Review Letters,1987,58(23):2436-2438.
[7] Hattori T;Tsurumachi N;Kawato S et al.Photonic dispersion relation in a one-dimensional quasicrystal[J].Physical Review B:Condensed Matter,1994,50(06):4220-4223.
[8] Jin GJ.;Wang ZD.;Hu A.;Jiang SS.;Kang SS. .COUPLED OPTICAL INTERFACE MODES IN A FIBONACCI DIELECTRIC SUPERLATTICE[J].Physical Review.B.Condensed Matter,1996(17):11883-11886.
[9] Liu NH. .PROPAGATION OF LIGHT WAVES IN THUE-MORSE DIELECTRIC MULTILAYERS[J].Physical Review.B.Condensed Matter,1997(6):3543-3547.
[10] L. Dal Negro;M. Stolfi;Y. Yi;J. Michel;X. Duan;L. C. Kimerling;J. LeBlanc;J. Haavisto .Photon band gap properties and omnidirectional reflectance in Si/SiO_(2) Thue-Morse quasicrystals[J].Applied physics letters,2004(25):5186-5188.
[11] Qiu F.;Peng RW.;Huang XQ.;Liu YM.;Wang M.;Hu A.;Jiang SS. .Resonant transmission and frequency trifurcation of light waves in Thue-Morse dielectric multilayers[J].EPL,2003(6):853-859.
[12] Lavrinenko AV.;Zhukovsky SV.;Sandomirski KS.;Gaponenko SV. .Propagation of classical waves in nonperiodic media: Scaling properties of an optical Cantor filter - art. no. 036621[J].Physical review.E.Statistical physics, plasmas, fluids, and related interdisciplinary topics,2002(3 Pt.2b):6621-0.
[13] Sengupta S;Chakrabarti A;Chattopadhyay S .Electronic transport in a Cantor stub waveguide network[J].Physical review, B. Condensed matter and materials physics,2005(13):4204-1-4204-7-0.
[14] Gerardin J.;Lakhtakia A. .Spectral response of Cantor multilayers made of materials with negative refractive index[J].Physics Letters, A,2002(5/6):377-381.
[15] Craciun F;Bettucci A;Molinar E et al.Direct experimental observation of fracton mode patterns in one-dimensional cantor composites[J].Physical Review Letters,1992,68(10):1555-1558.
[16] Jin DF;Jin GJ .Matrix maps for substitution sequences in the biquaternion representation[J].Physical review, B. Condensed matter and materials physics,2005(1):4212-1-4212-10-0.
[17] Juan A. Monsoriu;Carlos J. Zapata-Rodriguez;Enrique Silvestre;Walter D. Furlan .Cantor-like fractal photonic crystal waveguides[J].Optics Communications: A Journal Devoted to the Rapid Publication of Short Contributions in the Field of Optics and Interaction of Light with Matter,2005(1/3):46-51.
[18] Liu NH.;Zhu SY.;Chen H.;Wu X. .Superluminal pulse propagation through one-dimensional photonic crystals with a dispersive defect - art. no. 046607[J].Physical review.E.Statistical physics, plasmas, fluids, and related interdisciplinary topics,2002(4 Pt.2b):6607-0.
[19] Wang WL;Liu NH;Lin Q;Zhu SY .Propagation of coherent and partially coherent pulses through one-dimensional photonic crystals[J].Physical review, E. Statistical, nonlinear, and soft matter physics,2004(1 Pt.2):6601-1-6601-12-0.
[20] Feng L;Liu XP;Lu MH;Chen YF .Phase compensating effect in left-handed materials[J].Physics Letters, A,2004(5/6):449-455.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%