欢迎登录材料期刊网

材料期刊网

高级检索

采用固相烧结工艺制备了钙钛矿结构的(K0.5Na0.5)NbO3+ xwt%ZnO(x=0,0.5,1.0,2.0)无铅压电陶瓷.研究了ZnO掺杂对(K0.5Na0.5)NbO3陶瓷体系烧结行为和电学性能的影响.结果表明:ZnO掺杂能够有效地降低陶瓷烧结温度,抑制K和Na的挥发,提高陶瓷的致密性.当掺杂量为0.5 wt%、烧结温度为1115℃时,陶瓷的体积密度最大p=4.41 g/em3.所有样品的晶粒形态均为层状堆垛结构,晶粒尺寸越大,层状堆垛形态越明显.晶粒形态和尺寸的变化与(K0.5Na0.5)NbO3陶瓷烧结过程中液相的形成和晶粒生长机制有关.适量的液相能够有效地提高陶瓷的致密性,获得均匀的微结构.当x=0.5、烧结温度为1115℃时,陶瓷具有最佳的电学性能:d33=118pC/N,kp=0.36,Pr=15.6 μC/cm2.

参考文献

[1] Wanda W. Wolny .European approach to development of new environmentally sustainable electroceramics[J].Ceramics International,2004(7):1079-1083.
[2] Erling Ringgaard;Thorn Wurlitzer .Lead-free piezoceramics based on alkali niobates[J].Journal of the European Ceramic Society,2005(12):2701-2706.
[3] Guo Y P;Kakimoto K;Ohsato H .Structure and Electrical Properties of Lead-free (Na0.5K0 5) NbO3-BaTiO3 Ceramics[J].Japanese Journal of Applied Physics,2004,43(09):6662-6666.
[4] Yiping Guo;Ken-ichi Kakimoto;Hitoshi Ohsato .Dielectric and piezoelectric properties of lead-free (Na_(0.5)K_(0.5))NbO_3-SrTiO_3 ceramics[J].Solid State Communications,2004(5):279-284.
[5] Song HC;Cho KH;Park HY;Ahn CW;Nahm S;Uchino K;Park SH .Microstructure and piezoelectric properties of (1-x)(Na0.5K0.5)NbO3-xLiNbO(3) ceramics[J].Journal of the American Ceramic Society,2007(6):1812-1816.
[6] Jeager R E;Egerton L .Hot Pressing of Potassium-sodium Niobate[J].Journal of the American Ceramic Society,1962,45(05):208-213.
[7] 高 濂;宫本大树 .放电等离子烧结技术[J].无机材料学报,1997,12(02):129-133.
[8] Matsubara M;Yamaguchi T;Kikuta K et al.Sinterability and Piezoelectric Properties of (K,Na)NbO3 Ceramics with Novel Sintering Aid[J].Japanese Journal of Applied Physics,2004,43(10):7159-7163.
[9] N. Marandian Hagh;K. Kerman;B. Jadidian .Dielectric and piezoelectric properties of Cu~(2+)-doped alkali Niobates[J].Journal of the European Ceramic Society,2009(11):2325-2332.
[10] R. Hayati;A. Barzegar .Microstructure and electrical properties of lead free potassium sodium niobate piezoceramics with nano ZnO additive[J].Materials Science & Engineering, B. Solid-State Materials for Advanced Technology,2010(2):121-126.
[11] 李月明,张华,江良,李润润,刘虎.B2O3-CuO-Li2CO3对CSLST陶瓷微波介电性能影响的研究[J].人工晶体学报,2010(06):1504-1508.
[12] 陈伟业,刘彭义,林彩平,常鹏.SiO2对低温烧结压电陶瓷PMNNS的性能影响[J].人工晶体学报,2012(01):141-145.
[13] Song HC;Cho KH;Park HY;Ahn CW;Nahm S;Uchino K;Park SH .Microstructure and piezoelectric properties of (1-x)(Na0.5K0.5)NbO3-xLiNbO(3) ceramics[J].Journal of the American Ceramic Society,2007(6):1812-1816.
[14] Seong-Hyeon Hong;Doh-Yeon Kim .Effect of Liquid Content on the Abnormal Grain Growth of Alumina[J].Journal of the American Ceramic Society,2001(7):1597-1600.
[15] Ahn, CW;Hwang, HI;Lee, KS;Jin, BM;Park, S;Park, G;Yoon, D;Cheong, H;Lee, HJ;Kim, IW .Raman Spectra Study of K_(0.5)Na_(0.5)NbO_3 Ferroelectric Thin Films[J].Japanese journal of applied physics,2010(9 Pt.1):095801:1-095801:4.
[16] Cheol-Woo Ahn;Chee-Sung Park;Chang-Hak Choi .Sintering Behavior of Lead-Free (K,Na)NbO_3-Based Piezoelectric Ceramics[J].Journal of the American Ceramic Society,2009(9):2033-2038.
[17] Rahman M N.Ceramic Processing & Sintering[M].Boca Raton:Marcel Dekker Inc,2003
[18] Kingery W D .Densification during Sintering in the Presence of a Liquid Phase.I.Theory[J].Journal of Applied Physics,1959,30(03):301-306.
[19] J. SVOBODA;H. RIEDEL;R. GAEBEL .A MODEL FOR LIQUID PHASE SINTERING[J].Acta materialia,1996(8):3215-3226.
[20] Park S H;Ahn C W;Nahm S et al.Microstructure and Piezoelectric Properties of ZnO-added (Na0.5K0 5) NbO3 Ceramics[J].Japanese Journal of Applied Physics,2004,43(3 B):L1072-L1074.
[21] 陈燕,江向平,涂娜,冯子义,陈超,李月明.K_4CuNb_8O_(23)掺杂对K_(0.44)Na_(0.52)Li_(0.04)Nb_(0.86)Ta_(0.10)Sb_(0.04)O_3压电陶瓷性能的影响[J].人工晶体学报,2009(05):1098-1102.
[22] Damjanovic D. .Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics [Review][J].Reports on Progress in Physics,1998(9):1267-1324.
[23] Guo Y P;Kakimoto K;Ohsato H .(Na0.5K0 5) NbO3-LiTaO3 Lead-free Piezoelectric Ceramics[J].Materials Letters,2005,59(2-3):241-245.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%