{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"高活性低成本氧还原反应(ORR)电催化剂是燃料电池和金属/空气电池等可再生能源技术的关键组成部分.在离子液体[(C16mim)2CuCl4]和质子化的石墨化氮化碳(g-CN)的存在下,采用简易的水热反应制备了Cu/g-CN电催化剂用于ORR.与纯的g-CN相比,所制Cu/g-CN表现出高的ORR催化活性:起始电势正移99 mV,为2倍动力学电流密度.另外,Cu/g-CN还表现出比商用Pt/C(HiSPECTM 3000,20%)催化剂更好的稳定性和甲醇容忍性.因此,该催化剂作为廉价的高效ORR电催化剂有望应用于燃料电池中.","authors":[{"authorName":"李赫楠","id":"401888fc-202d-40ce-b8e8-c4125534ba2d","originalAuthorName":"李赫楠"},{"authorName":"徐雅楠","id":"98df287a-a8db-4f48-9536-1b3e8da3a20c","originalAuthorName":"徐雅楠"},{"authorName":"HansineeSitinamaluwa","id":"ac56248b-0874-41d2-b0f9-ffb8f23dc883","originalAuthorName":"HansineeSitinamaluwa"},{"authorName":"KimalWasalathilake","id":"1512722e-d0ab-4400-8c71-2cbf2ab20e3b","originalAuthorName":"KimalWasalathilake"},{"authorName":"DiliniGalpaya","id":"edeb446d-140a-4ece-8821-f920028d1aed","originalAuthorName":"DiliniGalpaya"},{"authorName":"闫澄","id":"b25f8d16-8779-4626-bdf9-83501c68c647","originalAuthorName":"闫澄"}],"doi":"10.1016/S1872-2067(17)62764-5","fpage":"1006","id":"ea096064-409c-4043-9b0f-3b0eec9d4007","issue":"6","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"541c44b6-4ab0-4a00-ad6f-5dd41d076cde","keyword":"氧还原反应","originalKeyword":"氧还原反应"},{"id":"9ffe2e4b-31d2-4152-b319-4c09b38c5420","keyword":"石墨化氮化碳","originalKeyword":"石墨化氮化碳"},{"id":"04382581-1d1e-417d-b52f-007b7a315618","keyword":"纳米颗粒","originalKeyword":"纳米颗粒"},{"id":"3c3765ed-5305-4d5d-8141-9a0eeae6310a","keyword":"电催化剂","originalKeyword":"电催化剂"},{"id":"85e76654-a1cb-4bf6-8689-61e28fbab062","keyword":"离子液体","originalKeyword":"离子液体"}],"language":"zh","publisherId":"cuihuaxb201706005","title":"石墨化氮化碳负载Cu纳米颗粒用作高效氧还原电催化剂","volume":"38","year":"2017"},{"abstractinfo":"近几十年来,光电化学分解水制氢作为一种洁净的、能持续利用太阳能的技术受到极大关注.在众多光催化材料中,p型半导体氧化亚铜(Cu2O)被认为是最有前途的可见光光电分解水材料之一.理论上,它的光能转换为氢能的效率可达到18.7%.然而,目前所报道的Cu2O光转换效率远远低于此值;同时,纯Cu2O在光照条件下的稳定性较差.研究表明,Cu2O与其它半导体复合可以增强其光电转换效率和提高稳定性.如Cu2O和能带匹配的石墨相氮化碳(g-C3N4)复合后,光催化性能和稳定性都有较大提高.但目前所报道的Cu2O/g-C3N4复合物几乎都是粉末状催化剂,不便于回收和重复使用.本文首先采用电化学方法在FTO导电玻璃上沉积Cu2O薄膜,采用溶胶凝胶法制备g-C3N4纳米颗粒材料,然后采用电化学法在Cu2O薄膜表面沉积一层g-C3N4纳米颗粒,得到了Cu2O/g-C3N4异质结膜.分别利用X射线粉末衍射(XRD)、高分辨透射电子显微镜(HRTEM)、扫描电子显微镜(SEM)、紫外可见光谱(UV-Vis)和光电化学分解水实验分析了Cu2O/g-C3N4异质结的组成结构、表面形貌、光吸收性能及催化剂活性和稳定性.XRD和HRTEM表征显示,本文成功合成了Cu2O/g-C3N4异质结材料,SEM图表明g-C3N4纳米颗粒在Cu2O表面分布均匀,大小均一.可见光光电化学分解水结果显示,异质结薄膜的光电化学性能比纯的Cu2O和g-C3N4薄膜材料有极大提高.当在Cu2O表面沉积g-C3N4的时间为15 s时,得到样品Cu2O/g-C3N4-15异质结膜,其在–0.4 V和可见光照射条件下,光电流密度达到了–1.38 mA/cm2,分别是纯Cu2O和g-C3N4薄膜材料的19.7和6.3倍.产氢速率也达到了0.48 mL h–1 cm–2,且产氢和产氧的速率之比约为2,说明此异质结材料在可见光作用下能全分解水.经过三次循环实验,光电化学分解水的效率仅降低10.8%,表明该材料具有良好的稳定性.根据UV-Vis表征和光电化学性能对比,Cu2O/g-C3N4-15的光电性能最好,但其光吸收性能并不是最好,说明光电化学性能与光吸收不是成正比关系,主要是由于Cu2O和g-C3N4两个半导体相互起到了协同作用.机理分析表明,Cu2O/g-C3N4异质结薄膜在光照下,由于两者能带匹配,Cu2O的光生电子从其导带转移到g-C3N4的导带上,g-C3N4价带上的空隙转移到Cu2O的价带上,从而降低了光生电子和空隙的复合,提高了其光催化性能.由于g-C3N4的导带位置高于H2O(或H+)还原为H2的电势,Cu2O的价带位置低于H2O(或OH–)还原为O2的电势,所以在外加–0.4 V偏压和可见光照射条件下,Cu2O/g-C3N4能全分解水,光生载流子越多,光电化学分解水的速率越大.综上所述,在Cu2O薄膜上沉积g-C3N4后得到的异质结薄膜具有高效的光能转换为氢能性能.","authors":[{"authorName":"张声森","id":"6bbce3f3-5311-4c11-8cd2-8878203a0fd3","originalAuthorName":"张声森"},{"authorName":"晏洁","id":"b1b64038-63e1-4d4f-b5b3-36c07304f021","originalAuthorName":"晏洁"},{"authorName":"杨思源","id":"1bfe6da9-56ca-41db-9d6e-c5cca9e00f18","originalAuthorName":"杨思源"},{"authorName":"徐悦华","id":"a719c67d-bcf0-469d-9f0e-2fa1cfcf69bc","originalAuthorName":"徐悦华"},{"authorName":"蔡欣","id":"b6819ef9-a9bc-4979-ae22-51070bfbe364","originalAuthorName":"蔡欣"},{"authorName":"张向超","id":"a69fa3fa-e434-43f9-9ab9-234a2542df1b","originalAuthorName":"张向超"},{"authorName":"彭峰","id":"9aaa9090-64a5-4928-8c36-548355cfb92d","originalAuthorName":"彭峰"},{"authorName":"方岳平","id":"ddb4520f-05f8-45dc-82f5-9b84dfe3a8fb","originalAuthorName":"方岳平"}],"doi":"10.1016/S1872-2067(16)62588-3","fpage":"365","id":"808e5332-e477-4a81-a5d5-1ce306f3322d","issue":"2","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"eff5e76c-af48-49cd-ad91-ffc88275d86e","keyword":"氧化亚铜","originalKeyword":"氧化亚铜"},{"id":"e2b3c725-2aac-4159-a7dd-a2f34a618cfe","keyword":"石墨化氮化碳","originalKeyword":"石墨化氮化碳"},{"id":"7f1be581-9408-4114-bf68-6f9fd7f00eaf","keyword":"异质结薄膜","originalKeyword":"异质结薄膜"},{"id":"e1f4909c-d55c-4b8d-95ee-e545a3bc8cd6","keyword":"电化学沉积","originalKeyword":"电化学沉积"},{"id":"6b97b035-286b-4bc3-9696-1774a16c7232","keyword":"可见光","originalKeyword":"可见光"},{"id":"19b77cd1-21b2-4a95-8db1-b9734af43ea8","keyword":"光电化学分解水","originalKeyword":"光电化学分解水"},{"id":"c894f13d-19e1-4fed-a288-003a8afc7dbf","keyword":"产氢","originalKeyword":"产氢"}],"language":"zh","publisherId":"cuihuaxb201702021","title":"在FTO导电玻璃上电化学沉积高效可见光光电化学分解水Cu2O/g-C3N4异质结膜","volume":"38","year":"2017"},{"abstractinfo":"随着科学技术的不断进步和经济的快速发展,人类对自然资源的需求量越来越大,在开发利用自然资源的同时,大量的有机污染物也随之进入自然环境.这些物质不仅污染环境、破坏生态,更对人类的生活和健康带来了巨大的威胁.研究证实,半导体光催化剂在光照条件下可以破坏有机污染物的分子结构,最终将其氧化降解成CO2、H2O或其它不会对环境产生二次污染的小分子,从而净化水质.近年来,有关光催化降解有机污染物的报道日益增多. ZnO作为一种广泛研究的光催化降解材料,因其无毒、低成本和高效等特点而具有一定的应用前景.但是ZnO较大的禁带宽度(3.24 eV)导致其只能吸收紫外光部分,而对可见光的吸收效率很小,极大地制约了其实际应用.除此之外, ZnO受光激发产生的电子-空穴分离效率较低、光催化过程中的光腐蚀严重也是制约其实际应用的重要因素.为了提高ZnO的光催化活性和稳定性,本文合成了用g-C3N4修饰的氧空位型ZnO(g-C3N4/Vo-ZnO)复合催化剂,在有效调控ZnO半导体能带结构的同时,通过负载一定量的g-C3N4以降低光生电子-空穴对的复合速率和反应过程中ZnO的光腐蚀,增强催化剂的光催化活性和稳定性.本文首先合成前驱体Zn(OH)F,然后焙烧三聚氰胺和Zn(OH)F的混合物得到g-C3N4/Vo-ZnO复合催化剂,并采用电子顺磁共振波谱(EPR)、紫外-可见光谱(UV-vis)、高分辨透射电镜(HRTEM)和傅里叶变换红外光谱(FT-IR)等表征了它们的结构及其性质. EPR结果表明,ZnO焙烧后具有一定浓度的氧空位,导致其禁带宽度由3.24 eV降至3.09 eV,因而提高了ZnO对可见光的吸收效率. UV-vis结果显示, Vo-ZnO复合g-C3N4后对可见光的吸收显著增强. HRTEM和FT-IR结果均表明, g-C3N4纳米片和Vo-ZnO颗粒之间通过共价键形成了强耦合,这对g-C3N4/Vo-ZnO复合催化剂中光生载流子的传送和光生电子-空穴对的有效分离起到重要作用.可见光催化降解甲基橙(MO)和腐殖酸(HA)的实验进一步证明, g-C3N4/Vo-ZnO复合材料具有较好的光催化活性,优于单一的g-C3N4或Vo-ZnO材料.同时还发现, g-C3N4的负载量对光催化活性有显著影响,当氮化碳的负载量为1 wt%时,所制材料具有最高的光催化活性:可见光照射60 min后,MO降解率可达到93%, HA降解率为80%.复合材料光催化活性的增强一方面是因为氧空位的形成减小了ZnO的禁带宽度,使得ZnO对可见光的吸收能力大大增强;另一方面, g-C3N4和Vo-ZnO的能带符合了Z型催化机理所需的有效能带匹配,使得光生电子-空穴对得到了有效的分离,从而提高了光催化活性.降解MO的循环实验表明, g-C3N4/Vo-ZnO催化剂具有很好的稳定性且不容易发生光腐蚀.与此同时,我们对比了用不同方法制备的g-C3N4/ZnO材料的催化性能.结果显示,本文制备的g-C3N4/Vo-ZnO复合材料具有更好的降解效率.总体而言,对于降解有机污染物, g-C3N4/Vo-ZnO可能是一个更为有效可行的催化体系.此外,本文也为设计与制备其他新型光催化剂提供了一条新的思路.","authors":[{"authorName":"刘亚男","id":"080c2c39-bf2e-4450-8be1-6aad930a2c1f","originalAuthorName":"刘亚男"},{"authorName":"王瑞霞","id":"76373755-20c0-437f-b02d-896134cececa","originalAuthorName":"王瑞霞"},{"authorName":"杨正坤","id":"729f4db7-9a0d-4336-8d7d-75e6af40e615","originalAuthorName":"杨正坤"},{"authorName":"杜虹","id":"743ba36f-b6ef-4636-8263-5115783f1805","originalAuthorName":"杜虹"},{"authorName":"姜一帆","id":"2cd76981-bd33-4ca7-8807-67337a57bcef","originalAuthorName":"姜一帆"},{"authorName":"申丛丛","id":"9ac675ee-c359-4eb9-bcf8-524e94ec8486","originalAuthorName":"申丛丛"},{"authorName":"梁况","id":"b3986bb6-ec6c-4091-8f57-4e1e2a364c76","originalAuthorName":"梁况"},{"authorName":"徐安武","id":"3ba7c490-8dd4-420c-8c78-7b8599f2b796","originalAuthorName":"徐安武"}],"doi":"10.1016/S1872-2067(15)60985-8","fpage":"2135","id":"d89c7222-9708-432f-94a4-e186760c2b65","issue":"12","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"6dcbc3b2-1b46-4bf3-83a3-354c853ba68b","keyword":"氧空位氧化锌","originalKeyword":"氧空位氧化锌"},{"id":"9a599fa6-3e84-4bdf-ae06-8a28f275b7e7","keyword":"石墨化氮化碳","originalKeyword":"石墨化氮化碳"},{"id":"ffd22a98-d5de-426a-a375-550223fdc8b4","keyword":"复合光催化剂","originalKeyword":"复合光催化剂"},{"id":"177f5aa3-ca18-468f-ab7b-c7f115e77382","keyword":"光降解","originalKeyword":"光降解"},{"id":"8fb31bcf-f34e-4fc4-a034-369365eb16d4","keyword":"Z型","originalKeyword":"Z型"}],"language":"zh","publisherId":"cuihuaxb201512010","title":"Z型复合催化剂g-C3N4/Vo-ZnO光催化活性的研究","volume":"","year":"2015"},{"abstractinfo":"采用简便的化学浸渍法制备了新型磁性可分离的纳米复合物H5PMo10V2O40/Fe3O4/g-C3N4(PMoV/Fe3O4/g-C3N4),并进行了详细的表征,采用电位滴定法测定了催化剂酸性.该PMoV/Fe3O4/g-C3N4纳米复合物在硫化物选择氧化为砜或亚砜的反应中表现出较高的催化活性;考察了在优化反应条件下,它在含硫(包括二苯并噻吩DBT)模拟油或真实石油的催化氧化反应中的催化性能;特别考察了各种含氮化合物,以及1-环和2-环芳香烃作为共溶剂对DBT脱硫效果的影响.采用外加磁场即可方便地将该催化剂从反应混合物中分离和回收.选取最好的萃取剂,通过简单的倾滤就可很容易地将剩余反应物从产物中分离出来.该纳米催化剂具有高催化活性,且容易重复使用,至少可以重复使用4次而未见催化活性明显下降.","authors":[{"authorName":"Ezzat Rafiee","id":"d1e38c92-3683-4619-a522-796c4a453560","originalAuthorName":"Ezzat Rafiee"},{"authorName":"Maryam Khodayari","id":"0251242e-9879-4d19-8a1a-d89603b39d96","originalAuthorName":"Maryam Khodayari"}],"doi":"10.1016/S1872-2067(16)62548-2","fpage":"458","id":"ec6b981c-ecc4-457c-8882-cebc611c9480","issue":"3","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"ebaa45df-30f8-46fd-993f-699a61da53ef","keyword":"石墨化氮化碳","originalKeyword":"石墨化氮化碳"},{"id":"5d98cfc5-c36b-4f43-9b95-adc714bde42b","keyword":"纳米复合物","originalKeyword":"纳米复合物"},{"id":"731cfd3a-4f2a-4420-9bed-1897c83c0ed3","keyword":"三聚氰胺","originalKeyword":"三聚氰胺"},{"id":"2f59fc55-4267-4523-911a-befdd6260bb3","keyword":"杂多酸","originalKeyword":"杂多酸"},{"id":"8e8ac5e4-d901-4be2-8bb9-8be05328342c","keyword":"氧化脱硫","originalKeyword":"氧化脱硫"},{"id":"9854d71f-1c38-49b2-ba01-32e020575e91","keyword":"石油","originalKeyword":"石油"}],"language":"zh","publisherId":"cuihuaxb201703006","title":"从三聚氰胺制得工业用深度脱硫的绿色纳米催化剂PMoV/Fe3O4/g-C3N4: 合成与表征","volume":"38","year":"2017"},{"abstractinfo":"用1:1.5的三聚氯氰和三聚氰胺的饱和乙腈溶液为沉积液,在Si(100)衬底上室温常压下电化学沉积了CNx薄膜.用X射线光电子能谱(XPS)、傅立叶转换红外光谱(FTIR)、X射线衍射图谱(XRD)对沉积的CNx薄膜进行了测试和分析.XRD的衍射峰的结构数据与文献计算的类石墨相氮化碳的结构数据较为吻合.XPS结果表明沉积的薄膜中主要元素为C、N,且N/C=0.81,C1s和N1s的结合能谱中287.84eV的碳和400.00eV的氮是样品中碳氮的主体,以C3N3杂环的形式存在.FTIR光谱中在800cm-1、1310cm-1和1610cm-1的吸收峰也表明薄膜中存在C3N3环,和XPS能谱的分析结果一致.Teter和Hemley预言的g-C3N4在结构形式上和三聚氰胺的完美脱胺缩聚物是一样的,红外光谱和X射线光电子能谱表明在样品中存在三嗪环(C3N3),支持XRD的实验结果.这说明CNx薄膜中有类石墨相的C3N4晶体存在.","authors":[{"authorName":"李超","id":"23cb51c7-87d8-465f-974a-801a857efcd5","originalAuthorName":"李超"},{"authorName":"曹传宝","id":"ad4a2310-c5ce-4b62-8c1b-8f85817fbdc7","originalAuthorName":"曹传宝"},{"authorName":"朱鹤孙","id":"a1211e68-28fe-480e-ad5a-c1a7e06a6341","originalAuthorName":"朱鹤孙"},{"authorName":"吕强","id":"4c85cbed-268d-4e78-b7e6-8f4f5854ccd4","originalAuthorName":"吕强"},{"authorName":"张加涛","id":"3b31a296-6891-472e-9ac3-b4ead0fba2de","originalAuthorName":"张加涛"},{"authorName":"项顼","id":"a0dccda4-3db1-4b2e-84c7-3cbffb365fda","originalAuthorName":"项顼"}],"doi":"10.3969/j.issn.1000-985X.2003.03.015","fpage":"252","id":"d5362757-cf10-48ef-ada1-dda77ac91fea","issue":"3","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"ce845db4-84c3-4760-9e70-56ff6df627b5","keyword":"电化学沉积","originalKeyword":"电化学沉积"},{"id":"5346959b-c903-4121-a50f-0527159b5611","keyword":"氮化碳","originalKeyword":"氮化碳"},{"id":"789cde3a-3c8b-4548-a4a9-52e6bcc7dc53","keyword":"CNx薄膜","originalKeyword":"CNx薄膜"},{"id":"036135a7-08a1-411b-9ec1-cc24ed1e5368","keyword":"g-C3N4","originalKeyword":"g-C3N4"}],"language":"zh","publisherId":"rgjtxb98200303015","title":"类石墨氮化碳薄膜的电化学沉积","volume":"32","year":"2003"},{"abstractinfo":"g-C3N4是一种新型的稳定的半导体光催化材料,它可以通过热缩聚法、固相反应法、电化学沉积法和溶剂热法等制备.g-C3N4禁带宽度约为2.7 eV,吸收边在460 nm左右,具有合适的导带位置,可用作可见光响应制氢的光催化材料,但在实际应用中g-C3N4光催化性能较低,其原因可归纳为:(1)g-C3N4在吸收光子产生电子和空穴对后,光生载流子的传输速率较慢,容易在体相或表面复合,致使g-C3N4的量子效率较低;(2)材料在合成过程中易于结块,使g-C3N4的比表面积远小于理论值,严重削弱了g-C3N4光催化材料的制氢性能.目前已有很多关于g-C3N4改性的报道,但一些方法对材料的处理过程耗时较长或者合成过程较难控制.用助剂改性是提高光催化制氢活性的半导体材料的主要策略之一.合适的助剂可改进电荷分离和加速表面催化反应,从而提高光催化剂的制氢活性.虽然稀有金属或贵金属,如铂、金和银可大大提高g-C3N4的制氢速率,但由于其昂贵和稀缺性,因而应用严重受限.因此,开发成本低、储量丰富、高性能助剂来进一步提高制氢性能具有重要意义.NiS2来源丰富、价格低廉.它可在酸性和碱性的环境保持相对较高的稳定性,且其表面电子结构表现出类金属特性.但它较难与半导体光催化剂形成强耦合和界面,通常需要水热等条件下合成.实验表明,g-C3N4表面存在着大量的含氧官能团及未缩合的氨基基团,为表面接枝提供了丰富的反应活性位点,因而可利用g-C3N4表面均匀分布的含氧官能团等和Ni2+结合,再原位与S2?反应,从而在g-C3N4上负载耦合紧密的NiS2助剂,进一步提高复合材料的光催化制氢活性.本文采用低温浸渍法制备了NiS2/g-C3N4光催化剂.NiS2助剂在温和的反应条件下与g-C3N4光催化剂复合,可以防止催化剂结构的破坏,同时使得助剂均匀地分散,并紧密结合在催化剂表面,从而大大提高光催化剂的制氢性能.该样品制备过程为:(1)通过水热处理制备含氧官能团和较大比表面积的g-C3N4;(2)添加Ni(NO3)2前驱体后,Ni2+离子由于静电作用紧密吸附在g-C3N4表面;(3)在80oC加入硫代乙酰胺(TAA),可在g-C3N4的表面紧密和均匀形成助剂NiS2.表征结果证实成功制备NiS2纳米粒子修饰的g-C3N4光催化剂.当Ni含量为3 wt%,样品表现出最大的制氢速率(116μmol h?1 g?1),明显高于纯g-C3N4.此外,对NiS2/g-C3N4(3 wt%)的样品进行光催化性能的循环测试结果表明:该样品在可见光照射下可以保持一个稳定的、有效的光催化制氢性能.根据实验结果,我们提出一个可能的光催化机理:即NiS2促进了物质表面快速转移光生电子,使g-C3N4光生电荷有效分离.基于NiS2具有成本低和效率高的优点,因而有望广泛应用于制备高性能的光催化材料.","authors":[{"authorName":"陈峰","id":"b59bb09b-e2f6-407d-8d7e-14f44c5ee05e","originalAuthorName":"陈峰"},{"authorName":"杨慧","id":"0638092d-3d12-4e44-858e-55e04045e5ac","originalAuthorName":"杨慧"},{"authorName":"王雪飞","id":"898da3ef-6721-4fec-8178-0622d7bd83be","originalAuthorName":"王雪飞"},{"authorName":"余火根","id":"195224be-0fac-47bb-a3ec-c0f5a2a59f71","originalAuthorName":"余火根"}],"doi":"10.1016/S1872-2067(16)62554-8","fpage":"296","id":"ecbfa0ac-4e84-40aa-9a32-eb999bb8ded9","issue":"2","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"1f90bbd5-c44c-491e-8b14-95f679bd422d","keyword":"光催化","originalKeyword":"光催化"},{"id":"725c01ed-8223-4a0d-8986-e9243e777815","keyword":"NiS2","originalKeyword":"NiS2"},{"id":"eb78c220-d84a-4f7a-9e28-ef95fadc2172","keyword":"石墨化氮化碳","originalKeyword":"石墨化氮化碳"},{"id":"f57c6b19-86c8-42fa-9f11-1315478e0a5d","keyword":"助剂","originalKeyword":"助剂"},{"id":"e6809f5d-91dd-4b13-8bbf-2a712b461bb9","keyword":"可见光催化制氢","originalKeyword":"可见光催化制氢"}],"language":"zh","publisherId":"cuihuaxb201702013","title":"NiS2助剂修饰g-C3N4光催化剂的简易合成及光催化制氢性能增强研究","volume":"38","year":"2017"},{"abstractinfo":"氮化硅陶瓷由于具有优良的机械性能、化学性能和物理性能而被广泛应用于化工、冶金及航天等领域.催化氮化法制备氮化硅可以有效避免“硅芯”及“流硅”等不完全氮化形为的发生;并促进氮化硅晶须的原位反应合成,改善氮化硅基材料界面的显微结构,提高最终制品的力学性能.本文综述了金属及金属氧化物催化剂催化氮化反应生成氮化硅的最新进展及一维氮化硅的原位生成机理,并在此基础上展望了催化氮化制备氮化硅工艺今后的发展方向.","authors":[{"authorName":"赵万国","id":"89705ee7-c218-4f02-a8c9-26041c9364f6","originalAuthorName":"赵万国"},{"authorName":"古亚军","id":"810d66cc-a843-40d6-ab79-92aa61b8d5f7","originalAuthorName":"古亚军"},{"authorName":"李发亮","id":"e51a1120-3140-4887-9b40-5733c972587f","originalAuthorName":"李发亮"},{"authorName":"王军凯","id":"50404b2b-d1f4-479a-b557-1971a3bf7692","originalAuthorName":"王军凯"},{"authorName":"张海军","id":"d46f1991-547a-4c38-afac-a112572af52e","originalAuthorName":"张海军"},{"authorName":"张少伟","id":"86439c52-fad8-4ce4-a8f0-f4b200d5a9fe","originalAuthorName":"张少伟"}],"doi":"","fpage":"1106","id":"4bb28e8d-74c8-4c26-86a5-bf644328244b","issue":"4","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"123444a9-3147-4dca-8d54-a7daaf16f0bf","keyword":"氮化硅","originalKeyword":"氮化硅"},{"id":"537b52eb-6cca-4d16-bf60-88dc2e60f4ed","keyword":"一维纳米材料","originalKeyword":"一维纳米材料"},{"id":"8356c604-a5bf-4620-a07e-1b2f452dae97","keyword":"催化氮化","originalKeyword":"催化氮化"},{"id":"4f614ce7-4217-467c-b145-0fc48fd75393","keyword":"反应机理","originalKeyword":"反应机理"}],"language":"zh","publisherId":"gsytb201604021","title":"催化氮化制备氮化硅粉体","volume":"35","year":"2016"},{"abstractinfo":"石墨相氮化碳(g-C3N4)是一种新型的非金属半导体光催化剂,具有良好的热稳定性和化学稳定性.近年来,许多研究聚焦于在g-C3N4基体中构建介孔结构.此类介孔石墨相氮化碳(mpg-C3N4)具有较大比表面积,并在催化领域得到广泛应用.本文综述了mpg-C3N4的结构、制备方法,并详细介绍了mpg-C3N4在催化领域的应用.未来,构建有序介孔结构及提高其光催化性能依然是mpg-C3N4领域的研究重点.","authors":[{"authorName":"王艳环","id":"9456e2b9-735a-474b-821a-3f976aa982ee","originalAuthorName":"王艳环"},{"authorName":"郭强","id":"bf820205-f1d4-44d1-a0f6-734859ff32ed","originalAuthorName":"郭强"},{"authorName":"姜涛","id":"02ef9a06-9435-43ce-9eec-5b12fb6fa835","originalAuthorName":"姜涛"},{"authorName":"陈延辉","id":"24923627-4347-4ee3-b492-fc700c8de17f","originalAuthorName":"陈延辉"},{"authorName":"李健","id":"ae38fd11-0250-40f7-ac8f-38a445e4405b","originalAuthorName":"李健"},{"authorName":"闫冰","id":"f4fff15b-a101-442c-bd1d-02b39683d714","originalAuthorName":"闫冰"}],"doi":"","fpage":"2693","id":"6513c7c1-b0ba-4252-9d71-abd353b65a71","issue":"11","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"47e595a2-a14d-45f5-bdb2-19e9c43b9ad8","keyword":"介孔氮化碳","originalKeyword":"介孔氮化碳"},{"id":"f4bbc656-8982-49e5-8a00-2892d18fd5d8","keyword":"模板剂","originalKeyword":"模板剂"},{"id":"9ff041ac-7907-4cd2-9b6e-1e5ef3ec3778","keyword":"催化剂","originalKeyword":"催化剂"}],"language":"zh","publisherId":"rgjtxb98201611023","title":"介孔石墨相氮化碳制备及其催化应用研究进展","volume":"45","year":"2016"},{"abstractinfo":"通过硬模板法,采用氰胺前驱物和二氧化硅纳米管(SiO2-NTs)模板,合成石墨相氮化碳纳米管(CN-NTs)光催化剂.采用扫描电镜(SEM)、透射电镜(TEM)、X射线粉末衍射(XRD)、傅立叶变换红外光谱(FT-IR)、氮气吸附/脱附测试、紫外可见漫反射光谱(UV-VisDRS)、荧光光谱、热重分析(TGA)等手段对CN-NTs催化剂的结构与性能进行表征.结果表明,CN-NTs的化学组成是石墨相氮化碳(g-C3N4),形貌为均匀的纳米管,且是介孔材料.与体相氮化碳(B-CN)和介孔石墨相氮化碳(mpg-CN)相比,CN-NTs的光吸收带边蓝移到440 nm,荧光发射谱的峰强减弱.在可见光(λ> 420 nm)照射下,CN-NTs具有较高的光催化分解水活性,产氢速率为58 μmol/h,且表现出良好的光催化活性稳定性和化学结构稳定性.研究结果表明纳米管状结构能有效促进g-C3N4半导体激子解离,提高光生电子-空穴的分离效率,进而显著优化g-Ca N4的光催化产氢性能.","authors":[{"authorName":"郑云","id":"fb5bd480-ad0a-4092-b93b-01408f6947aa","originalAuthorName":"郑云"},{"authorName":"王博","id":"339033f1-3e37-4421-81a2-60b0a15a25db","originalAuthorName":"王博"},{"authorName":"王心晨","id":"199644f7-03e5-4e5b-a72f-94fcdde066b0","originalAuthorName":"王心晨"}],"doi":"10.7517/j.issn.1674-0475.2015.05.417","fpage":"417","id":"eb8525ad-5447-40db-bbf4-3251c094769d","issue":"5","journal":{"abbrevTitle":"YXKXYGHX","coverImgSrc":"journal/img/cover/YXKXYGHX.jpg","id":"74","issnPpub":"1674-0475","publisherId":"YXKXYGHX","title":"影像科学与光化学 "},"keywords":[{"id":"ba724b6d-70c0-4f89-a055-2faaf334f1b0","keyword":"石墨相氮化碳","originalKeyword":"石墨相氮化碳"},{"id":"050dd9a5-5a44-4b79-a43f-044fe68f3a36","keyword":"纳米管","originalKeyword":"纳米管"},{"id":"8f0c670b-1fbe-44ff-a2b3-673c3427bc6f","keyword":"硬模板","originalKeyword":"硬模板"},{"id":"216c9c27-d6e9-4473-b9e1-0c03e9ec50aa","keyword":"光催化","originalKeyword":"光催化"},{"id":"41841994-9280-4ac1-a49e-1b22cf852841","keyword":"氢能","originalKeyword":"氢能"}],"language":"zh","publisherId":"ggkxyghx201505009","title":"石墨相氮化碳纳米管的合成及光催化产氢性能","volume":"33","year":"2015"},{"abstractinfo":"利用石墨型氮化碳(C3N4)和氨硼烷(NH3BH3,AB)球磨制备了AB-C3N4体系,发现C3N4的加入使AB放氢反应温度明显降低,但是副产物氨气浓度有所升高.因此,利用LiBH4改性的C3N4 (LC3N4)同AB球磨合成出了AB-LC3N4体系,并采用X射线衍射、程序升温脱附-质谱联用、热重-差热分析及核磁共振等技术考察了该体系的脱氢性能.结果表明,由于LC3N4的加入,AB的放氢反应温度明显降低,放氢反应速率加快,放氢诱导期缩短,同时抑制了副产物无机苯的生成.另外,C3N4的化学修饰也降低了AB-LC3N4放氢过程中生成氨气的浓度.动力学分析和核磁共振结果表明,AB-LC3N4分解过程依然遵循NH3BH2NH3BH4诱导的氨硼烷自分解机理.","authors":[{"authorName":"张静","id":"5a6583ad-518c-4160-84c6-c725107b24a9","originalAuthorName":"张静"},{"authorName":"何腾","id":"470fd9f9-8807-467c-a867-23b12083bf17","originalAuthorName":"何腾"},{"authorName":"刘彬","id":"8705e1d3-fb60-4722-963c-17a70033eeae","originalAuthorName":"刘彬"},{"authorName":"柳林","id":"37e88a0b-4ee7-4d75-9416-b987c14fb0d4","originalAuthorName":"柳林"},{"authorName":"赵泽伦","id":"3f54f748-e931-4919-8ab4-cc8785ebe307","originalAuthorName":"赵泽伦"},{"authorName":"胡大强","id":"faa75ec9-45d8-4654-81bd-0a52e697466c","originalAuthorName":"胡大强"},{"authorName":"鞠晓花","id":"03b555b5-2023-4b72-920e-31aee51817dc","originalAuthorName":"鞠晓花"},{"authorName":"吴国涛","id":"2def2cd2-8c2f-4c23-ba16-f9de0077bded","originalAuthorName":"吴国涛"},{"authorName":"陈萍","id":"b783e9b7-5054-46c1-b554-b5eccd335d2d","originalAuthorName":"陈萍"}],"doi":"10.1016/S1872-2067(12)60566-X","fpage":"1303","id":"c567f296-fbe9-42d2-bd2f-30141f9abf5f","issue":"7","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"f4deac5a-baf4-48f7-972c-a2f3884e0e63","keyword":"氨硼烷","originalKeyword":"氨硼烷"},{"id":"c95c7f33-83d7-4f67-b561-268dc6cd4ff5","keyword":"氮化碳","originalKeyword":"氮化碳"},{"id":"8ef382fb-e9c5-4a26-b640-8d34c9f0f086","keyword":"脱氢","originalKeyword":"脱氢"},{"id":"02b0be73-727e-4099-9139-e5373722a4d0","keyword":"硼氢化锂","originalKeyword":"硼氢化锂"}],"language":"zh","publisherId":"cuihuaxb201307004","title":"石墨型氮化碳对氨硼烷放氢性能的影响","volume":"34","year":"2013"}],"totalpage":737,"totalrecord":7365}