催化学报 , 2003, 24(2): 81-82.
新型复合负载金属-支撑水相催化剂
朱何俊 1, , 丁云杰 2, , 严丽 {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"应用碟管式反渗透(DTRO)技术对杨梅汁进行浓缩研究.实验结果表明,经过三倍浓缩(以体积计),杨梅汁总酸含量(质量分数)由10.23%%增大到30.05%;波美度由4.3°Be增大到11.7°Be;可溶性固形物含量由7.35%增大到19.5%.另外,采用2% C531+NaOH(pH 11~11.5)对膜进行碱洗,膜通量可以得到有效恢复.验证了DTRO技术可用于杨梅汁浓缩工艺.并确定了合理的清洗方案.","authors":[{"authorName":"张洋","id":"d4021122-be4f-4614-a1d9-9eb2b2661684","originalAuthorName":"张洋"},{"authorName":"周俊波","id":"ea447b50-11e6-4217-a062-a89750425737","originalAuthorName":"周俊波"},{"authorName":"张赵剑","id":"ff6a71f9-a0ea-4f35-b8af-0324ee096fe0","originalAuthorName":"张赵剑"}],"doi":"","fpage":"81","id":"803892b8-088c-424d-a250-4f4650942079","issue":"2","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"1106f669-1b0e-4a09-a877-9d79dca56c8b","keyword":"杨梅汁","originalKeyword":"杨梅汁"},{"id":"e743cd74-4175-47dc-94f8-249e19897a40","keyword":"碟管式反渗透","originalKeyword":"碟管式反渗透"},{"id":"0e36968d-e742-48eb-8bbf-25a99d2c62ed","keyword":"浓缩","originalKeyword":"浓缩"},{"id":"bd083707-f58a-43c9-9d77-772af60e1762","keyword":"膜清洗","originalKeyword":"膜清洗"}],"language":"zh","publisherId":"mkxyjs201402016","title":"碟管式反渗透浓缩杨梅原汁","volume":"34","year":"2014"},{"abstractinfo":"以深圳老虎坑、上海黎明、沈阳老虎冲、大辛垃圾填埋场渗滤液处理系统为例,介绍了一种新型的反渗透技术--碟管式反渗透(DTRO),它在处理垃圾渗滤液方面有着独特的优势,出水水质稳定且能达到国家生活垃圾填埋场污染控制标准中水污染物排放控制要求.","authors":[{"authorName":"左俊芳","id":"d6ddfd3a-06e1-49ba-831e-1ac09b87bcc9","originalAuthorName":"左俊芳"},{"authorName":"宋延冬","id":"cab1fa41-1663-4a09-8680-7138a2e76fcb","originalAuthorName":"宋延冬"},{"authorName":"王晶","id":"6cc332e6-66f7-46c9-8144-576f7876338d","originalAuthorName":"王晶"}],"doi":"10.3969/j.issn.1007-8924.2011.02.021","fpage":"110","id":"483b9cd3-df58-46a5-85a5-2ce1faf3e627","issue":"2","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"060f3c90-02fd-440b-89a1-72c58c1309a6","keyword":"垃圾渗滤液","originalKeyword":"垃圾渗滤液"},{"id":"8c3e590b-431d-4fcc-b21a-af017a3f2c54","keyword":"碟管式反渗透","originalKeyword":"碟管式反渗透"},{"id":"333d28ea-3e79-4947-94b0-eedcd64dfb39","keyword":"膜分离技术","originalKeyword":"膜分离技术"}],"language":"zh","publisherId":"mkxyjs201102021","title":"碟管式反渗透(DTRO)技术在垃圾渗滤液处理中的应用","volume":"31","year":"2011"},{"abstractinfo":"在脱盐水处理工艺中,反渗透技术得到了越来越广泛的应用.反渗透膜的运行状况直接影响到反渗透制水系统的可靠运行,作为卷式反渗透膜的损害方式主要有3种:膜污染、水锤及背压.对于反渗透膜来说,每种形式的损害均会使反渗透膜的性能下降,从而影响反渗透系统的性能.通过反渗透系统的运行状况和日常维护可以判断反渗透膜的损害形式,只要从设计、运行以及日常维护上采取恰当的方式和措施,可以保证反渗透膜稳定可靠地运行.","authors":[{"authorName":"刘向东","id":"1e8a1d24-bb11-4dee-96cd-2862d913cae6","originalAuthorName":"刘向东"},{"authorName":"楼伟","id":"8e6f81e9-0a61-4d60-b80f-b9714dd666c0","originalAuthorName":"楼伟"}],"doi":"10.3969/j.issn.1007-8924.2002.06.015","fpage":"69","id":"3e39b3e9-d3e4-412c-9752-f240d2b8d226","issue":"6","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"01a4068c-16cf-4154-88b1-8be772df3452","keyword":"反渗透膜","originalKeyword":"反渗透膜"},{"id":"23c7c6ec-dcef-496f-bb0f-fadfdebd20ae","keyword":"损害形式","originalKeyword":"损害形式"},{"id":"e40f5a55-1358-4de3-9d9f-dcc22eca7de7","keyword":"预防措施","originalKeyword":"预防措施"}],"language":"zh","publisherId":"mkxyjs200206015","title":"卷式反渗透膜的损害及预防","volume":"22","year":"2002"},{"abstractinfo":"建立新型膜清洗装置,将压缩空气和化学清洗液形成气液两相混合流体对2.5英寸(1英寸=25.4 mm)卷式反渗透膜进行清洗研究.系统地探讨了气液两相流清洗过程中清洗液流量、气体流速、气液比、清洗时间对膜截留率和通量恢复率的影响.结果表明清洗液在0.12 L/rain时,即可获得较好的膜通量恢复率.不同过滤面积的反渗透膜,清洗液的临界流量不同,超过该流量对膜通量恢复率无明显影响.膜通量恢复率随气体流速的增加而增加,聚酰胺材质反渗透膜气速上限是18 m/s,更高的气速将降低膜截留率.气液比在2000∶ 1~3000∶1范围内能有效提高膜通量恢复率.两相流清洗时间一般不超过15 min就能获得理想清洗效果.","authors":[{"authorName":"郭竹洁","id":"e0d76deb-77cc-4f2f-b0ba-659548053440","originalAuthorName":"郭竹洁"},{"authorName":"王枢","id":"2240f534-bc00-44d3-b020-a3635241bb24","originalAuthorName":"王枢"},{"authorName":"孟涛","id":"f69a2eef-0c82-4b3c-907a-32a136207151","originalAuthorName":"孟涛"},{"authorName":"王娇","id":"5d43d7b9-70dc-4281-b9cf-58c43e69dd2e","originalAuthorName":"王娇"}],"doi":"10.3969/j.issn.1007-8924.2011.06.015","fpage":"73","id":"55fde428-057c-43e5-8c6d-da748384173a","issue":"6","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"057cf995-365e-4392-bd83-ec467b59eb89","keyword":"气液两相流","originalKeyword":"气液两相流"},{"id":"4a3f1414-44fc-4c33-9ef0-ae82b9511c9d","keyword":"膜清洗","originalKeyword":"膜清洗"},{"id":"4ed4612a-fe90-49d0-996f-26bea58fa8db","keyword":"卷式反渗透膜","originalKeyword":"卷式反渗透膜"},{"id":"aa755590-d503-4c97-8567-623f67545b5d","keyword":"截留率","originalKeyword":"截留率"},{"id":"f0fd4d0d-9c68-4414-a46e-db4b12404168","keyword":"通量恢复率","originalKeyword":"通量恢复率"},{"id":"17e512a9-008a-4463-a297-273017714797","keyword":"气体流速","originalKeyword":"气体流速"},{"id":"6f39d59f-c4bf-478c-a0f4-9bd0f37a0869","keyword":"气液比","originalKeyword":"气液比"}],"language":"zh","publisherId":"mkxyjs201106015","title":"卷式反渗透膜的气液两相流清洗特性","volume":"31","year":"2011"},{"abstractinfo":"选择在螺旋卷式反渗透膜元件组件设计中,对影响膜元件使用寿命的抗污染性能及影响膜元件系统运行能耗的工艺参数进行理论模拟实验,并与实际生产运行相结合,得出最优化的设计组合.主要工艺参数为给水流道布宽度、深度、入水角度、及膜元件卷制页数的优化选择,筛选出提高抗污染性能及低能耗、高经济性的膜元件,并对螺旋卷式膜元件的设计起指导作用.","authors":[{"authorName":"王双","id":"19757310-9aa7-413c-83d6-bd88db7b4e73","originalAuthorName":"王双"},{"authorName":"梁剑","id":"4e0adc45-2fe5-4787-b7b3-203e8af9b1a2","originalAuthorName":"梁剑"},{"authorName":"蔡相宇","id":"bcc27a89-c9c8-49b8-b366-b011a6c614e6","originalAuthorName":"蔡相宇"},{"authorName":"祝敏","id":"17c05d16-2ee4-49a5-a7cb-048549f4676d","originalAuthorName":"祝敏"}],"doi":"10.3969/j.issn.1007-8924.2012.04.017","fpage":"87","id":"418a62c0-9751-4187-93b4-096becdee525","issue":"4","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"4c2b8f38-8fa3-4b5c-8d80-af3bd670118e","keyword":"螺旋卷式反渗透膜元件","originalKeyword":"螺旋卷式反渗透膜元件"},{"id":"edc08562-6e61-4da3-9969-0a57ba0df1f5","keyword":"抗污染性能","originalKeyword":"抗污染性能"},{"id":"102e05c3-d8a3-4ff0-a3e7-41c7d998890e","keyword":"低能耗","originalKeyword":"低能耗"},{"id":"78beedea-39a7-4b3b-ad21-d40bb39e4f43","keyword":"组件设计","originalKeyword":"组件设计"}],"language":"zh","publisherId":"mkxyjs201204017","title":"组件设计对卷式反渗透膜元件抗污染性及能耗影响","volume":"32","year":"2012"},{"abstractinfo":"应用超声时域反射法和信号拟合及量化模型在线监测卷式反渗透膜元件污染及清洗过程.实验采用三个2.25 MHz高频聚焦探头和商业卷式反渗透膜组件,污染液为1.0 g/L硫酸钙.清洗阶段包括纯水冲洗、浸洗与酸洗三部分.结果表明,超声信号能够穿透组件外壳而进入多层膜结构.观察发现随膜表面污染物沉积而超声信号发生系列有序变化.此外,随膜表面污染物沉积、结构变化以及污染层形成,声强不断减小至最低,后期趋于稳定.研究还发现,沿进料液流动方向,信号变化诱导期趋于变短,而且,污染物优先靠近出口处沉积;越靠近料液出口,信号变化幅度越大,污染越严重.这是由于沿轴向不断加剧的浓差极化所致.在清洗阶段,随着膜通量恢复超声信号变化表现出一致性.","authors":[{"authorName":"安耿宏","id":"4bdafdfd-d392-4e73-9313-5a0452012656","originalAuthorName":"安耿宏"},{"authorName":"林捷斌","id":"b636ba1c-fef2-4327-95ec-1381702a059a","originalAuthorName":"林捷斌"},{"authorName":"李贤辉","id":"e4bafd2a-b172-42e1-b95e-66a2032dcec4","originalAuthorName":"李贤辉"},{"authorName":"王虹","id":"53e6ae92-1d03-4b93-9eca-e339d85affb1","originalAuthorName":"王虹"},{"authorName":"李建新","id":"71dd75dc-17e7-472f-848d-d1f476661bc9","originalAuthorName":"李建新"},{"authorName":"菅喜岐","id":"1c821dd4-cd50-4091-98ad-47d85f60dcb2","originalAuthorName":"菅喜岐"},{"authorName":"靖大为","id":"595ab05f-225f-4b43-950f-bd9423af20e9","originalAuthorName":"靖大为"}],"doi":"10.3969/j.issn.1007-8924.2012.01.016","fpage":"86","id":"53c7ac8f-6849-4900-ac5e-0f56078b5a64","issue":"1","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"8faa2c61-24c9-450a-9a0e-7532576f5524","keyword":"超声时域反射法","originalKeyword":"超声时域反射法"},{"id":"43515229-629b-488b-9b0c-4dac3665e473","keyword":"卷式膜元件","originalKeyword":"卷式膜元件"},{"id":"6ef0b5a7-9337-4bc7-a60a-c808d5ec41e8","keyword":"反渗透","originalKeyword":"反渗透"},{"id":"eec913a2-dec7-4576-89ef-2fbe6dc99ec0","keyword":"膜污染","originalKeyword":"膜污染"},{"id":"e060445f-41a6-42cc-b6e6-9acaec14ceeb","keyword":"膜清洗","originalKeyword":"膜清洗"},{"id":"725db934-322c-4ff8-9750-6852a0ffc158","keyword":"声强","originalKeyword":"声强"}],"language":"zh","publisherId":"mkxyjs201201016","title":"超声波在线监测卷式反渗透膜污染及清洗","volume":"32","year":"2012"},{"abstractinfo":"针对含有Ca2+、Mg2+及SiO32-的反渗透(RO)浓水,提出了化学除硬→絮凝沉淀→离子交换→超滤处理的新型预处理流程.研究了该预处理方法对RO浓水中易结垢离子的去除效果,及其对气隙式膜蒸馏(AGMD)性能的影响.实验结果表明,经过该预处理过程后Ca2+、Mg2+和SiO32-的含量均低于5 mg/L.与常规的除硬处理不同,经过该预处理过程后,RO浓水中的难溶盐CaCO3、Mg (OH)2均未达到饱和,进行膜蒸馏浓缩时,不会立即在膜表面沉积.经预处理后,原RO浓水中的主要成分为NaCl,其可在膜蒸馏浓缩得到结晶固体.未经预处理的RO浓水浓缩7倍时,产水通量衰减了40.55%,电导率增大了22.71%,CODCr含量为40~60mg/L;对于预处理后的浓水,该衰减程度减小24.02%,且产水电导率保持相对稳定,COD含量低于10 mg/L,产水可以用作工业循环冷却水和工业洗涤水,经活性炭吸附后可用作锅炉用水.预处理后的RO浓水进入AGMD装置浓缩168 h,产水通量衰减缓慢,产水电导率一直维持在5 μS/cm以下,整个过程中COD均小于10mg/L.","authors":[{"authorName":"徐义明","id":"4265354e-4f2a-4aad-8e11-c89231216741","originalAuthorName":"徐义明"},{"authorName":"何清凤","id":"c53be141-aa55-430b-b67f-5f84ceabba23","originalAuthorName":"何清凤"},{"authorName":"黄晶晶","id":"9564f465-f410-4865-8d42-47059871277e","originalAuthorName":"黄晶晶"},{"authorName":"李凭力","id":"18601631-fa09-4ed9-bd1b-a8782eea5855","originalAuthorName":"李凭力"},{"authorName":"陈英才","id":"1af3779d-291b-4004-9e66-5ba515f074c0","originalAuthorName":"陈英才"},{"authorName":"吴浩赟","id":"e3dd875e-eade-4f8c-9629-67be8d39f7a9","originalAuthorName":"吴浩赟"},{"authorName":"陆晓咏","id":"91cf3bc1-ce46-458f-ad6e-f71489af9a97","originalAuthorName":"陆晓咏"},{"authorName":"耿洪鑫","id":"7aa4d532-fb1f-4a02-b0d4-61ef7ce46632","originalAuthorName":"耿洪鑫"},{"authorName":"黄益平","id":"af634fb8-7522-4bb7-be03-6b7c66ee22ba","originalAuthorName":"黄益平"}],"doi":"","fpage":"86","id":"6e9a0b26-37ad-47ee-be8b-d18c22ab8762","issue":"3","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"bf4fd4c1-7c7f-4de8-b582-d9568bc013b4","keyword":"RO浓水","originalKeyword":"RO浓水"},{"id":"477d9b74-8751-4896-94f3-778e9ef29025","keyword":"气隙式膜蒸馏","originalKeyword":"气隙式膜蒸馏"},{"id":"e4139b97-b735-4caf-942d-6dd5e9b4795a","keyword":"预处理","originalKeyword":"预处理"},{"id":"e458bbaf-2eae-4805-a22a-55bcd5093cb9","keyword":"产水通量","originalKeyword":"产水通量"},{"id":"9c441586-4901-49a7-9602-17c701e27689","keyword":"产水电导率","originalKeyword":"产水电导率"}],"language":"zh","publisherId":"mkxyjs201403015","title":"反渗透浓水预处理对气隙式膜蒸馏性能的影响","volume":"34","year":"2014"},{"abstractinfo":"对沧州炼油厂反渗透(RO)装置运行和维护中出现的问题进行了分析和解决,对其它RO装置运行与维护有借鉴作用.","authors":[{"authorName":"钱连新","id":"baede569-dbd9-45bc-b03e-e7147238f19a","originalAuthorName":"钱连新"}],"doi":"10.3969/j.issn.1007-8924.2003.03.015","fpage":"62","id":"57839a7a-6ac4-4463-b33f-c41934997b0c","issue":"3","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"2a4ac1ac-b42d-49c3-b7db-3daa4e24303d","keyword":"反渗透","originalKeyword":"反渗透"},{"id":"4cec3b29-7bcb-4eb5-9e98-837a1daa3bcd","keyword":"运行","originalKeyword":"运行"},{"id":"2439f011-f1db-45f4-bed2-a0302185f9e9","keyword":"维护","originalKeyword":"维护"}],"language":"zh","publisherId":"mkxyjs200303015","title":"反渗透运行与维护","volume":"23","year":"2003"},{"abstractinfo":"介绍了内压式中空毛细管超滤膜技术用于反渗透进水前置处理的特点、工业应用情况和其经济效益.","authors":[{"authorName":"陈良刚","id":"62a64f3e-93bf-42db-bfb2-a522162e7e6b","originalAuthorName":"陈良刚"},{"authorName":"陈清","id":"2fbe3d02-035a-40f2-947d-3c13a9e9d299","originalAuthorName":"陈清"}],"doi":"10.3969/j.issn.1007-8924.2003.04.010","fpage":"45","id":"2e1f467c-1d0f-4829-aa69-df6bb8b24a35","issue":"4","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"54885425-95c0-4d32-9dc0-0524510441ff","keyword":"中空毛细管","originalKeyword":"中空毛细管"},{"id":"5fb693fc-9eb5-4d3b-8d3d-2b2a738702f8","keyword":"超滤膜","originalKeyword":"超滤膜"},{"id":"6c058b15-e71e-49f9-aa1e-8d943391a477","keyword":"RO进料","originalKeyword":"RO进料"}],"language":"zh","publisherId":"mkxyjs200304010","title":"超滤膜用于反渗透的前置处理","volume":"23","year":"2003"},{"abstractinfo":"简要回顾了反渗透技术的发展过程及应用状况.针对国内典型反渗透海水淡化工程实例,分析了一期、二期不同工艺、设备的技术特点,并针对相关海域的海水水质介绍了海水预处理技术以及存在的问题.","authors":[{"authorName":"解利昕","id":"550227fc-c78f-4bb0-9a9b-26149aca566c","originalAuthorName":"解利昕"},{"authorName":"王世昌","id":"2d27025e-212d-48fe-923a-4f4b847b277e","originalAuthorName":"王世昌"}],"doi":"10.3969/j.issn.1007-8924.2004.04.016","fpage":"66","id":"a8b73568-d4ea-458f-9d29-acbf51afee6a","issue":"4","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"e75c0930-4017-4a2f-971d-d0661a1399a7","keyword":"反渗透","originalKeyword":"反渗透"},{"id":"2b4f3c6b-675a-4c14-a2b5-2ea84cbed137","keyword":"海水","originalKeyword":"海水"},{"id":"a02de3d2-b35b-4ab7-90b6-9cc3ae81d93e","keyword":"淡化","originalKeyword":"淡化"},{"id":"7de7b92f-c97e-4176-8cc0-fadcb3e25e8b","keyword":"预处理","originalKeyword":"预处理"}],"language":"zh","publisherId":"mkxyjs200404016","title":"反渗透海水淡化技术应用","volume":"24","year":"2004"}],"totalpage":1597,"totalrecord":15962}