欢迎登录材料期刊网

材料期刊网

高级检索

为探明黄铁矿在砷黄铁矿生物浸出过程中的作用与影响,选择纯黄铁矿和砷黄铁矿组成的矿浆浸出体系,考察黄铁矿和砷黄铁矿质量比以及黄铁矿粒度对体系中砷的浸出率以及砷的氧化状态的影响。结果表明:砷的浸出率随黄铁矿与砷黄铁矿质量比的增加而升高,随黄铁矿粒度的增加而减少。当黄铁矿的粒度小于74μm、黄铁矿与砷黄铁矿质量比为10:2时,砷的最高浸出率为97.7%,比不添加黄铁矿时砷的浸出率提高了约43.18%。且黄铁矿可以加速As(Ⅲ)转化为As(Ⅴ),降低矿浆对细菌的毒害,使生物浸出体系细菌密度提高、pH下降、氧化还原电位φh升高并与砷黄铁矿形成原电池效应,从而促进砷黄铁矿的浸出。

In order to clarify the function of pyrite in arsenopyrite bioleaching, pure pyrite and arsenopyrite were used to prepare a pulp system for studying the effect of the pyrite-to-arsenopyrite mass ratio and particles size of pyrite on the leaching rate and oxidation state of arsenic. The results show that the leaching rate of arsenic increases with increasing the mass fraction of pyrite and decreases with increasing the particle size of pyrite. When the mass ratio of pyrite to arsenopyrite is 10:2 and the particles size of pyrite is less than 74μm, the highest leaching rate of arsenic is 97.7%, which is about 43.18%higher than that of the arsenopyrite bioleaching without pyrite. The pyrite can accelerate the transform of As(Ⅲ) to As(Ⅴ), which reduces the toxicity of pulp and makes the bioleaching system have higher bacterial density, lower pH, higher oxidation-reduction potential, and generates galvanic effect with arsenopyrite. Therefore, the bioleaching efficiency of arsenopyrite can be promoted by adding pyrite.

参考文献

[1] 杨洪英,范金,崔日成,巩恩普.难处理高砷金矿的细菌氧化-提金研究[J].贵金属,2009(03):1-3,20.
[2] 杨丽丽,杨洪英,范有静,王大文,朱长亮,孙会兰.难处理金矿石细菌氧化的影响因素研究[J].贵金属,2007(01):58-62.
[3] 杨玮,覃文庆,刘瑞强,任允超.高砷难处理金精矿细菌氧化-氰化提金[J].中国有色金属学报,2011(05):1151-1158.
[4] 罗志雄,张广积,方兆珩.采用中温菌和常温菌浸出含砷金精矿[J].中国有色金属学报,2007(08):1342-1347.
[5] 杨松荣;邱冠周;胡岳华;谢纪元.含砷难处理金矿石生物氧化工艺及其应用[M].北京:冶金工业出版社,2006:93.
[6] M. Marquez;J. Gaspar;K.E. Bessler .Process mineralogy of bacterial oxidized gold ore in Sao Bento Mine (Brasil)[J].Hydrometallurgy,2006(1/4):114-123.
[7] 杨洪英,巩恩普,訾建威,杨立.嗜热菌对高砷金精矿氧化-氰化提金试验研究[J].东北大学学报(自然科学版),2006(04):426-429.
[8] 杨均流,温建康,陈勃伟,刘兴宇,林大泽.黄铁矿强化生物浸出低品位磷矿[J].北京科技大学学报,2010(09):1113-1118.
[9] 莫晓兰,林海,傅开彬,徐承焱,汪涵.黄铁矿促进黄铜矿微生物浸出影响因素[J].北京科技大学学报,2012(07):761-768.
[10] D. LANGHANS;A. LORD;D. LAMPSHIRE .Biooxidation of an arsenic-bearing refractory gold ore[J].Minerals Engineering,1995(1/2):147-158.
[11] 金世斌,马金瑞,郝福来.金精矿生物氧化过程中砷的氧化行为初探[J].黄金,2009(08):41-43.
[12] 杨洪英,杨立,魏绪钧.氧化亚铁硫杆菌(SH-T)氧化毒砂的机理[J].中国有色金属学报,2001(02):323-327.
[13] ARRASCUE M L;NIEKERK J V .Biooxidation of arsenopyrite concentrate using BIOX process:Industrial experience in Tamboraque,Peru[J].HYDROMETALLURGY,2006,83(1/4):90-96.
[14] JIANG Tao,LI Qian,YANG Yong-bin,LI Guang-hui,QIU Guan-zhou.Bio-oxidation of arsenopyrite[J].中国有色金属学会会刊(英文版),2008(06):1433-1438.
[15] 崔日成,杨洪英,张谷平,马玉蕊,范金,李科峰.毒砂型高砷金精矿的细菌氧化[J].化工学报,2008(12):3090-3094.
[16] 李宏煦,邱冠周,胡岳华,王淀佐.原电池效应对混合硫化矿细菌浸出的影响[J].中国有色金属学报,2003(05):1283-1287.
[17] WIERTZ J V;MATEO M;ESCOBAR B .Mechanism of pyritecatalysis of As(Ⅲ)oxidation in bioleaching solutions at 30℃and 70℃[J].HYDROMETALLURGY,2006,83(1/4):35-39.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%