高分子材料科学与工程, 2004, 20(2): 173-176.
注塑成型工艺参数对制品体收缩率变化的影响及工艺参数优化
王利霞 1, , 杨杨 2, , 王蓓 3, , 申长雨 Na0.5Bi0.5)xZr01Ti0.O3(x=0,0.05,0.1,0.15,0.2)陶瓷,并研究Bi、Na共同掺杂对BaZr01Ti0.9O3陶瓷结构、相组成、介电和铁电性能的影响.研究表明,Bi、Na共掺杂可以降低BaZr01Ti0.9O3陶瓷的烧结温度,并且在现有的掺杂水平下,所得陶瓷均为单一钙钛矿结构.陶瓷的相对介电常数在x=0.05时,由未掺杂的800增至最大值1700左右.陶瓷的介电损耗随Bi、Na掺杂量的增加,呈增加趋势.铁电性研究表明,随Bi、Na掺杂量的增加,存在漏电流增大的趋势,使得铁电性恶化,当含量超过0.1后呈现非铁电性.由以上可知,掺杂少量的Bi、Na,可以在一定程度上提高BaZr0.1Ti0.9O3陶瓷的介电性.","authors":[{"authorName":"范明月","id":"826ac231-5a70-472b-a67c-c20d862844f4","originalAuthorName":"范明月"},{"authorName":"张晓燕","id":"565029f1-bd69-443a-9f98-224aded283d5","originalAuthorName":"张晓燕"},{"authorName":"倪波","id":"1bca7926-4555-4528-8f1d-55fd320cffee","originalAuthorName":"倪波"},{"authorName":"孙桂芳","id":"efc33f65-b68b-4b07-8726-b969425d1592","originalAuthorName":"孙桂芳"},{"authorName":"齐西伟","id":"bb350011-5ca2-4fcf-a12f-f355b316eeb6","originalAuthorName":"齐西伟"},{"authorName":"包立","id":"970a2434-d043-4dfc-abf9-7ee6cba549a4","originalAuthorName":"包立"},{"authorName":"钟瑞霞","id":"f40305ab-eb0b-4948-9bf0-3cd9f9426277","originalAuthorName":"钟瑞霞"}],"doi":"","fpage":"2438","id":"d34bf1b2-4ea0-4db0-b8ce-4b60b0d65c63","issue":"9","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"38821f37-4b7c-40a3-a2c9-a947dd8fceea","keyword":"锆钛酸钡","originalKeyword":"锆钛酸钡"},{"id":"4f02adef-0891-4e17-9635-6c85aa782a42","keyword":"Bi、Na共掺杂","originalKeyword":"Bi、Na共掺杂"},{"id":"b082a74b-0d31-4c9f-82d1-c4fcac6a470c","keyword":"铁电性","originalKeyword":"铁电性"},{"id":"96d55d1c-4f43-41b8-a113-b1720b8bee60","keyword":"介电性","originalKeyword":"介电性"}],"language":"zh","publisherId":"rgjtxb98201509022","title":"Ba1-x(Na0.5Bi0.5)xZr0.1Ti0.9O3陶瓷的制备及性能研究","volume":"44","year":"2015"},{"abstractinfo":"采用真空熔炼及热压烧结方法制备了Na和Ga共掺杂n型Bi2Te2.7Se0.3热电材料.XRD结果表明,Na0.04Bi1.96-xGaxTe2.7Se0.3块体材料的XRD图谱与Bi2Te2.7Se0.3的图谱对应一致.通过EDAX技术对Na0.04Bi1.96-xGaxTe2.7Se0.3块体材料的成分进行了分析,无氧化现象.在298~523K温度范围内,在垂直于热压方向对样品的电热输运性能进行了测试分析,结果表明Na和Ga共掺杂可以有效地提高Bi2Te2.7Se0.3的载流子浓度,从而使电导率得到明显改善,但同时Seebeck系数有不同程度的损失.由于晶格热导率减小,Na掺杂及共掺杂样品Na0.04Bi1.96-xGaxTe2.7Se0.3(x=0.04)均使热导率降低.当Na掺杂浓度为0.04时,随着Ga掺杂浓度的增加,热导率呈现递增的现象,Na和Ga共掺杂样品Na0.04 Bi1.96-xGaxTe2.7Se0.3(x=0.04)的热电优值获得了较明显的提高,在398K时的最大ZT值为0.75.","authors":[{"authorName":"段兴凯","id":"589c810c-01b7-4602-9970-45a8d9cf6b54","originalAuthorName":"段兴凯"},{"authorName":"胡孔刚","id":"05a95375-ecf7-4d60-915d-13992bf75539","originalAuthorName":"胡孔刚"},{"authorName":"丁时锋","id":"59e436b4-6cec-453d-b294-b6cb040f2e01","originalAuthorName":"丁时锋"},{"authorName":"满达虎","id":"d20941a2-b3df-46c0-bed5-ee350cec5f1f","originalAuthorName":"满达虎"},{"authorName":"金海霞","id":"34dcd9b1-3b85-482c-b753-921e0a7414b5","originalAuthorName":"金海霞"}],"doi":"","fpage":"26","id":"e2fee10f-5c0c-4d86-9aeb-9e6f86b5e355","issue":"1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"31f2745b-ce8d-454b-9e1a-6f5a3e2fa031","keyword":"共掺杂","originalKeyword":"共掺杂"},{"id":"1dbf07b6-8642-4e5f-9023-219b6212c7c4","keyword":"Bi2Te2.7Se0.3","originalKeyword":"Bi2Te2.7Se0.3"},{"id":"5815a350-c410-4d9c-b0cb-e77d01eb50e9","keyword":"电输运性能","originalKeyword":"电输运性能"},{"id":"7ac667d4-1d44-47ea-8fdd-f8d6a32b4c7a","keyword":"热输运性能","originalKeyword":"热输运性能"}],"language":"zh","publisherId":"clkxygc201501007","title":"Na、Ga共掺杂对n型Bi2Te2.7Se0.3电热输运性能的影响","volume":"33","year":"2015"},{"abstractinfo":"采用基于密度泛函理论的第一原理平面波超软赝势法,对六方纤锌矿结构ZnO晶体,Na、N分别掺杂ZnO晶体,Na、N共掺杂ZnO晶体的几何结构进行了优化,其中Na、N共掺杂又分为Na、N相连和分开两种情况,以此为基础计算得到了这几种情况下ZnO晶体的能带结构,总态密度和分波态密度。结果表明,Na、N共掺得到的p型ZnO比单掺要好;两种共掺情况中Na、N分开会比Na、N相连p掺杂效果更好。","authors":[{"authorName":"解晓宇","id":"0154b0ad-d8ff-45b4-8a42-3327e3c7bdaa","originalAuthorName":"解晓宇"},{"authorName":"孙慧卿","id":"78dcc869-93fe-4bcc-b9b9-eb7b4e8bcffe","originalAuthorName":"孙慧卿"},{"authorName":"王度阳","id":"8d1486e0-8344-4d6d-a963-291f37b1f313","originalAuthorName":"王度阳"},{"authorName":"许轶","id":"53d9f29e-78d4-40f0-a7c5-1250a178f37b","originalAuthorName":"许轶"},{"authorName":"韩世洋","id":"2a550c89-a46c-4e2d-b8c4-758116047eef","originalAuthorName":"韩世洋"},{"authorName":"肖永能","id":"3335773f-c2af-40ce-9250-f6c627db1b09","originalAuthorName":"肖永能"}],"doi":"","fpage":"257","id":"a16cbdf7-a3bc-4473-87cd-aacdc9e82b5d","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"b2c5bcb7-303d-442a-8afb-8d710cdd6e07","keyword":"光电子学","originalKeyword":"光电子学"},{"id":"486ad54f-af06-4250-ae12-65344d448b8c","keyword":"ZnO电子结构","originalKeyword":"ZnO电子结构"},{"id":"1cb3eb84-2ea2-4de3-a42f-4044782d02ca","keyword":"第一原理","originalKeyword":"第一原理"},{"id":"ac7b67a4-bd9c-4bfc-84af-9eed90e3307b","keyword":"p型ZnO","originalKeyword":"p型ZnO"},{"id":"f0061965-d9d8-44d5-aa89-1d71ec3b0cc8","keyword":"Na、N共掺杂","originalKeyword":"Na、N共掺杂"}],"language":"zh","publisherId":"gncl201202031","title":"Na,N双受主共掺杂p型ZnO第一原理研究","volume":"43","year":"2012"},{"abstractinfo":"采用传统陶瓷工艺制备了镧掺杂(Na0.5Bi0.5)TiO3无铅压电陶瓷,研究了材料的结构、介电和压电性能.发现镧掺杂有利于生成稳定的钙钛矿结构,促进了晶粒生长.镧掺杂(Na0.5Bi0.5)TiO3陶瓷表现出明显的弛豫特性,当镧掺杂量为5mol%时,1200℃烧结样品室温下的介电常数从630提高到855,介电损耗从5.2%减小到3.3%.适量的镧掺杂大幅降低了材料的电导率,最佳的掺杂量为1 mol%,测量温度为75℃时,该配方1200℃烧结样品的电导率σ仅为7.75148×10-13S·cm-1,同掺杂前的9.50827×10-11 S·cm-1前相比减小了3个数量级.","authors":[{"authorName":"陈建华","id":"a68df4ba-b254-44c4-9377-b8f8f28fe88b","originalAuthorName":"陈建华"},{"authorName":"屈绍波","id":"02defdc7-62c1-4add-82cb-ac667b2def34","originalAuthorName":"屈绍波"},{"authorName":"朱林户","id":"bc0104af-3e51-4a84-9011-26deccb6be32","originalAuthorName":"朱林户"},{"authorName":"裴志斌","id":"abf5262d-e072-4da0-a353-0a4b30d5d453","originalAuthorName":"裴志斌"},{"authorName":"车俊","id":"4e086ed0-b804-4157-96cf-715cbde5672f","originalAuthorName":"车俊"}],"doi":"","fpage":"539","id":"6815b674-ac2d-4b6d-b23d-9e6614317f1b","issue":"z3","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"1e9894b7-eb27-4059-a519-56cd8c50930e","keyword":"无铅压电陶瓷","originalKeyword":"无铅压电陶瓷"},{"id":"7fee1e83-772a-4faf-aef3-76d46958bb33","keyword":"钛酸铋钠","originalKeyword":"钛酸铋钠"},{"id":"c66788af-dcb9-4b7e-95ee-92bdb95e04c7","keyword":"镧掺杂","originalKeyword":"镧掺杂"}],"language":"zh","publisherId":"xyjsclygc2007z3129","title":"镧掺杂(Na0.5Bi0.5)TiO3压电陶瓷的结构与性能","volume":"36","year":"2007"},{"abstractinfo":"采用化学沉淀法,在模拟体液环境中制备了Na、Mg、F三元素共掺杂的羟基磷灰石( HA)粉体,利用XRD、FT-IR、SEM、EDS等技术对其物相结构、微观形貌、化学组成和热稳定性进行了分析和表征。结果表明:Na/Mg/F对HA进行掺杂引起HA晶格发生畸变。 F元素的掺杂量对HA的形貌具有一定的影响;随着F掺杂量的增加,球形的HA颗粒逐渐转变成棒状结构。 F/P=0.25时,可以制得小而均匀的HA颗粒。抑菌环实验表明Na/Mg/F共掺杂HA对金黄色葡萄球菌的生长具有一定的抑制作用。 F/P=0.25时,抗菌性最强。煅烧温度在1000℃时HA的物相未发生变化,说明样品具有良好的热稳定性。","authors":[{"authorName":"郭效军","id":"7f886659-677f-481f-8e1b-7ba81985d1af","originalAuthorName":"郭效军"},{"authorName":"李岱","id":"128e42cf-88de-478f-8c6a-ff167fa2fbe8","originalAuthorName":"李岱"}],"doi":"","fpage":"345","id":"b1afa329-0ff2-4c64-b8d4-cf4453e47170","issue":"1","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"009bfc64-729b-4c3f-9bd8-1fe3638f82df","keyword":"化学沉淀法","originalKeyword":"化学沉淀法"},{"id":"8227c9c9-ceec-4fb8-9b19-cd02c06fc8b2","keyword":"模拟体液","originalKeyword":"模拟体液"},{"id":"5654d530-a2f8-42bc-8005-6b25b2dec838","keyword":"离子共掺杂","originalKeyword":"离子共掺杂"},{"id":"0108437f-e5b3-464a-bec7-d0a80c5017ba","keyword":"抗菌性","originalKeyword":"抗菌性"}],"language":"zh","publisherId":"gsytb201701061","title":"模拟体液中Na/Mg/F共掺杂羟基磷灰石的制备和表征","volume":"36","year":"2017"},{"abstractinfo":"采用真空熔炼(1073 K,8 h)和热压烧结(733 K,1 h)制备了Na掺杂P型Bi0.5 Sb1.5 Te3热电材料,并在293~473 K范围内进行了电导率、塞贝克系数测试.利用X射线衍射(XRD)、扫描电子显微镜(SEM)对样品的物相结构和表面形貌进行了表征.XRD分析表明,真空熔炼合成粉末和热压烧结块体材料的XRD图谱峰与Bi0.5Sb1.5-Te3的标准衍射图谱(01 089-4302)相对应,表明Na元素已经完全固溶到Bi0.5Sb1.5Te3晶体结构中,形成了单相固溶体合金.SEM分析说明,Bi0.Sb1.5xNax Te3热压块体材料在平行和垂直于热压方向的断面上都分布着大量的层片状结构.Na掺杂明显提高了Bi0.5Sb1.5Te3在室温附近的Seebeck系数,但降低了电导率.在实验掺杂浓度范围内,Na掺杂使P型Bi0.5 Sb1.5 Te3块体材料的功率因子均减小.","authors":[{"authorName":"胡孔刚","id":"91a4e2b6-52c4-43c6-a296-259b9792f65e","originalAuthorName":"胡孔刚"},{"authorName":"段兴凯","id":"35412f94-5e1c-4661-80a9-e661d53c120f","originalAuthorName":"段兴凯"},{"authorName":"满达虎","id":"d21e1eef-66e0-4292-9f03-656985856066","originalAuthorName":"满达虎"},{"authorName":"丁时锋","id":"4ef7ec0b-593c-459f-a853-567706f79948","originalAuthorName":"丁时锋"},{"authorName":"张汪年","id":"61c67064-a2d5-4312-a248-69e7fdf8b760","originalAuthorName":"张汪年"},{"authorName":"林伟民","id":"d4d0f4db-25b3-4cc0-8b82-c0f88262e585","originalAuthorName":"林伟民"}],"doi":"","fpage":"108","id":"e3ec9265-f37a-4d07-b880-4dd4ed016cc8","issue":"22","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"e19e3081-29c8-411c-9cc2-48d123705dcb","keyword":"Bi0.5Sb1.5Te3","originalKeyword":"Bi0.5Sb1.5Te3"},{"id":"81e7831c-576e-41ad-94b5-0cb534ae9ace","keyword":"掺杂","originalKeyword":"掺杂"},{"id":"2ff132d5-96b9-4b22-b542-403efdfc7098","keyword":"热电性能","originalKeyword":"热电性能"}],"language":"zh","publisherId":"cldb201322029","title":"Na掺杂P型Bi0.5Sb1.5Te3块状合金热电性能的研究","volume":"27","year":"2013"},{"abstractinfo":"研究了Na+替代Bi3+、Sn4+替代Nb5+对Bi2(Zn1/3Nb2/3)2O7陶瓷烧结特性、显微结构和介电性能的影响.结果表明,替代后样品的烧结温度从1000℃降低到860℃;在-30~130℃样品出现明显的介电弛豫现象;弛豫激活能在0.3eV左右.用缺陷偶极子和晶格畸变对Na-Sn掺杂Bi2(Zn1/3Nb2/3)2O7的介电弛豫现象进行了解释.","authors":[{"authorName":"李在映","id":"c2771956-b402-4bdf-86bd-c9df8a0c5eaa","originalAuthorName":"李在映"},{"authorName":"丁士华","id":"5e5db01d-d887-42de-bd82-f364d29f19b4","originalAuthorName":"丁士华"},{"authorName":"宋天秀","id":"f7eec102-e97a-4aaa-aad3-19347ae4d9f0","originalAuthorName":"宋天秀"},{"authorName":"郭丽华","id":"ba2a06b5-4747-4550-8da2-3d99f5cd4806","originalAuthorName":"郭丽华"}],"doi":"","fpage":"391","id":"666545c0-76dd-4e9f-8962-00eb40b3d20a","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"a6a34cd2-9b34-4026-a6db-c4c56e0f3c8f","keyword":"锌铌酸铋基陶瓷","originalKeyword":"锌铌酸铋基陶瓷"},{"id":"e68bbc53-30d7-4584-830f-f573e45f19ac","keyword":"介电弛豫","originalKeyword":"介电弛豫"},{"id":"cbc7b97e-acaa-48a9-8ffd-177c62df7b9d","keyword":"离子替代","originalKeyword":"离子替代"},{"id":"491c3278-b127-4031-979c-d9817b7aa408","keyword":"晶格畸变","originalKeyword":"晶格畸变"},{"id":"59fb974d-6831-4c31-8e56-3882747d95b6","keyword":"缺陷偶极子","originalKeyword":"缺陷偶极子"}],"language":"zh","publisherId":"cldb2010z2105","title":"Na-Sn掺杂Bi2O3-ZnO-Nb2O5陶瓷的性能","volume":"24","year":"2010"},{"abstractinfo":"基于密度泛函理论(DFT)的第一性原理,采用平面波超软赝势方法计算研究了W,Bi掺杂以及(W,Bi)共掺杂锐钛矿相TiO2的能带结构、电子态密度和吸收光谱.研究结果表明:W掺杂、或者是(W、Bi)共掺杂都能够使锐钛矿型TiO2的禁带宽度变窄,其光谱影响范围向可见光区域移动.Bi掺杂后杂质能级的出现抵消了禁带宽度的变宽,光催化效果较明显,可以出现红移.与W,Bi单掺杂相比,(W、Bi)共掺杂在可见光区域的光吸收强度更大,红移现象更明显,即其光催化效果更好.","authors":[{"authorName":"支晨琛","id":"f7f2477c-7681-46eb-a119-6f7e45036a3e","originalAuthorName":"支晨琛"},{"authorName":"张秀芝","id":"113a8a99-7701-4b32-a13f-dcf735e2afe1","originalAuthorName":"张秀芝"},{"authorName":"宫长伟","id":"0011c55b-b13b-4729-80de-5e3af32b82f2","originalAuthorName":"宫长伟"}],"doi":"10.14136/j.cnki.issn1673-2812.2016.01.026","fpage":"131","id":"5e78634c-556a-4a57-a06d-b26b5f07053f","issue":"1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"5fefc1b9-b661-42ff-a96d-2182c65fc769","keyword":"TiO2","originalKeyword":"TiO2"},{"id":"0985816d-eb0a-401d-9915-4ddda88b79fe","keyword":"第一性原理","originalKeyword":"第一性原理"},{"id":"f2fc7875-244f-486d-8397-ad03bc24b7e7","keyword":"掺杂","originalKeyword":"掺杂"},{"id":"51561361-1985-4fcb-b63d-5ea872469b80","keyword":"光催化","originalKeyword":"光催化"}],"language":"zh","publisherId":"clkxygc201601026","title":"W、Bi掺杂及(W、Bi)共掺锐钛矿TiO2的第一性原理计算","volume":"34","year":"2016"},{"abstractinfo":"采用基于密度泛函理论的第一性原理赝势平面波方法,计算了 Bi-N 共掺杂前后锐钛矿相 TiO2的晶格参数、电子结构、电荷布居、光吸收系数及其带边位置。结果表明,Bi-N 共掺杂导致 TiO2晶格发生畸变,八面体内的偶极矩较 Bi/N 单掺杂均略有增加,因而可更有效地分离光生电子-空穴对;同时共掺杂引起价带宽化,带边位置发生明显变化,提高了载流子的迁移率和 TiO2的氧化还原能力;Bi-N 共掺杂后价带顶和导带底附近形成了浅的杂质能级,增强了 TiO2对可见光的响应范围。因此,Bi-N 共掺杂 TiO2有效提高了TiO2的光催化能力和太阳光的利用率。","authors":[{"authorName":"周诗文","id":"3412f81c-1356-4c59-aeda-5f524ef3c611","originalAuthorName":"周诗文"},{"authorName":"彭平","id":"43d45c52-6e37-49d4-a3ea-dcff2cc5c73d","originalAuthorName":"彭平"},{"authorName":"唐元洪","id":"0cbc2f1f-6064-4b50-8e3d-06358ae69cee","originalAuthorName":"唐元洪"}],"doi":"10.3969/j.issn.1001-9731.2013.22.022","fpage":"3309","id":"e3089436-3568-48db-9ad0-48de7c78fd37","issue":"22","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"e854dd89-c5a5-4a7c-92a7-19d98829c462","keyword":"共掺杂","originalKeyword":"共掺杂"},{"id":"959ee9f0-c103-45df-86b0-98156075d565","keyword":"电子结构","originalKeyword":"电子结构"},{"id":"5f35d669-9a98-4da8-886b-ce49ba73acf2","keyword":"第一性原理","originalKeyword":"第一性原理"}],"language":"zh","publisherId":"gncl201322022","title":"Bi-N共掺杂对锐钛矿相TiO2电子结构与光学性质的影响","volume":"","year":"2013"},{"abstractinfo":"采用真空熔炼及热压烧结技术制备了Na和Al双掺杂P型Bi0.5Sb1.5Te3热电材料.利用X射线衍射(XRD)、扫描电子显微镜(SEM)对样品的物相结构和表面形貌进行了表征.XRD分析结果表明,Na0.04Bi0.5Sbl.46-xAlxTe3块体材料的XRD图谱与块体材料Bi0.5Sb1.5Te3的图谱完全对应,所有块体材料的衍射峰均与衍射卡JCPDS 49-1713对应,这表明Na和Al元素已经完全固溶到Bi0.5Sb1.5Te3晶体结构中,形成了单相固溶体合金.SEM形貌表明材料组织致密且有层状结构特征.Na和Al双掺杂提高了Bi0.5Sb1.5Te3在室温附近的Seebeck系数.在Na掺杂量为0.04时,同时Al掺杂量由x=0.04增加至0.12,电导率逐渐降低,在实验掺杂浓度范围内,Na和Al双掺杂会使P型Bi0.5Sb1.5Te3材料的电导率受到较大的损失.在300~500K时,通过Na和Al部分替代Sb,Na0.04Bi0.5Sb1.42Al0.04Te3和Na0.04Bi0.5 Sbl.38Al0.08Te3样品的热导率均有不同程度地减小,在300K时双掺杂样品Na0.04Bi0.5Sb1.42Al0.04Te3的最大Zr值达到1.45.","authors":[{"authorName":"段兴凯","id":"6814750c-7c5f-487f-bcbf-9beb02372bcc","originalAuthorName":"段兴凯"},{"authorName":"胡孔刚","id":"fbd64059-50a3-4965-a418-834632ac741e","originalAuthorName":"胡孔刚"},{"authorName":"满达虎","id":"92b3f277-8bd3-499d-88f5-e30942056a61","originalAuthorName":"满达虎"},{"authorName":"丁时锋","id":"6f0274fb-256a-4239-83b9-c631a47d3c38","originalAuthorName":"丁时锋"},{"authorName":"江跃珍","id":"b7a18123-fef5-4cf3-bbe9-cd469dbbdfe0","originalAuthorName":"江跃珍"},{"authorName":"郭书超","id":"fd72a445-48d5-4cb5-b296-f48ccb755bdd","originalAuthorName":"郭书超"}],"doi":"10.3969/j.issn.0258-7076.2013.05.013","fpage":"757","id":"47f8e033-0ad8-446d-a899-668e1edcafe8","issue":"5","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"e8b4036b-bbde-4b89-b427-d3e441d6a711","keyword":"双掺杂","originalKeyword":"双掺杂"},{"id":"df33e341-b405-4288-8d1c-d43cd0239ea6","keyword":"热压","originalKeyword":"热压"},{"id":"e699f7d4-521e-406b-9f3e-2e158793d2de","keyword":"微结构","originalKeyword":"微结构"},{"id":"2f6a986f-ceaa-4bb8-ae2e-92512c7e1e8f","keyword":"热电性能","originalKeyword":"热电性能"}],"language":"zh","publisherId":"xyjs201305013","title":"Na和Al双掺杂P型Bi0.5Sb1.5Te3热电材料的制备及性能研究","volume":"37","year":"2013"}],"totalpage":1963,"totalrecord":19628}