采用第一原理赝势平面波方法,基于虚拟晶体势函数近似(VCA),计算Fe合金化(浓度x<3.0%, 原子分数, 下同)时完整与缺陷B_2-NiAl晶体的弹性性质,并采用弹性常数C_(44)、Cauchy压力参数(C_(12)-C_(44))、杨氏模量E、剪切模量G 及其与体模量B_0的比值 G/B_0等,表征和评判Fe合金化浓度x对NiAl金属间化合物延性与硬度的影响.结果表明:无论是无缺陷的理想NiAl晶体,还是含Ni空位或Ni反位的NiAl缺陷晶体,x<0.6%的Fe合金化均可使其硬度大幅提高.Fe合金化浓度低于0.5%时,虽然完整NiAl晶体的延性变差,但含Ni空位的缺陷NiAl晶体的延性却可明显改善,并以x = 0.2%~0.4%时韧化效果最好.Ni空位或Ni反位降低B_2-NiAl晶体的本征延性.实验中0.20%~0.25%的Fe合金化对NiAl晶体延性的改善很可能源于Fe原子与NiAl晶体中Ni空位间的关联与协同作用.
Using the first-principles pseudopotential plane-wave methods based on the density functional theory, the elastic constants of B_2-(Ni_(1-x)Fe_x)Al (x=0-3.0 at%) supercells with or without Ni vacancy or Ni anti-site defect were calculated in the framework of Virtual Crystal Approximation. Several parameters, such as elastic constant C_(44), Cauchy pressure (C_(12)-C_(44)), Young modulus E, the shear modulus G and their ratio G/B_0, have been adopted to characterize and assess the effect of Fe alloying concentration on the ductility and hardness of NiAl intermetallic compounds. It is found that Fe addition with x < 0.6 at% is proved to be efficient to enforce the strength or hardness of NiAl intermetallic compounds either for perfect crystals or for defect crystals. No improvement of the ductility of perfect B_2-NiAl crystals can be demonstrated as Fe is added in the range from 0 to 3.0 at%. The Ni vacancy or Ni anti-site defects make the intrinsic ductility of perfect B_2-NiAl crystals without Fe addition to be weakened. However, an obvious decrease in the degree of the embrittlement of B_2-(Ni_(1-x)Fe_x)Al crystals with Ni vacancies can be seen as Fe alloying concentration x is lower than 0.5 at%, and the optimum additions locate in the range from 0.2 at% to 0.4 at%. From these calculations, a deduction therefore is conduced. That is for the distinct increase in the elongation rate of a B_2-NiAl single crystal with Fe addition of 0.20-0.25 at% in the experiments could originate from the correlative and cooperative effects between vacancies and Fe addition in the B_2-NiAl crystal.
参考文献
[1] | Darolia R .[J].Journal of Materials Science and Technology,1994,10:157. |
[2] | Morinaga M et al.[J].Acta Materialia,1990,38:25. |
[3] | 刘震云 et al.[J].机械工程材料,1998,22(01) |
[4] | 郭建亭,任维丽,周健.NiAl合金化研究进展[J].金属学报,2002(06):667-672. |
[5] | Darolia R et al.[J].Scripta Metallurgica et Materialia,1992,26(07):1007. |
[6] | Pike L M et al.[J].Intermetallics,1997,5(08):601. |
[7] | Guo J T et al.[J].Acta Metallurgica Sinica,1996,9(06):515. |
[8] | Munroe PR.;George M.;Baker I.;Kennedy FE. .Microstructure, mechanical properties and wear of Ni-Al-Fe alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1/2):1-8. |
[9] | Kovalev AI.;Barskaya RA.;Wainstein DL. .Effect of alloying on electronic structure, strength and ductility characteristics of nickel aluminide[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,2003(0):35-40. |
[10] | 胡艳军,彭平,李贵发,周惦武,韩绍昌.NiAl力学性质合金化效应的第一原理计算[J].中国有色金属学报,2006(01):47-53. |
[11] | 胡艳军,彭平,周惦武,李贵发,郑采星,韩绍昌.3d过渡金属在NiAl中占位的第一原理计算[J].中国有色金属学报,2004(12):2102-2107. |
[12] | Segall MD.;Lindan PJD.;Probert MJ.;Pickard CJ.;Hasnip PJ.;Clark SJ. Payne MC. .First-principles simulation: ideas, illustrations and the CASTEP code[J].Journal of Physics. Condensed Matter,2002(11):2717-2744. |
[13] | Vanderbilt D .[J].Physical Review B:Condensed Matter,1990,41(11):7892. |
[14] | Perdew J P et al.[J].Physical Review Letters,1996,77(18-28):3865. |
[15] | Fischer T H et al.[J].Journal of Physical Chemistry,1992,96(24):9768. |
[16] | Francis G P et al.[J].Journal of Physics:Condensed Matter,1990,2(19):4395. |
[17] | Pulay P .[J].Molecular Physics,1969,17(02):197. |
[18] | Souvatzis P et al.[J].Physical Review B:Condensed Matter,2004,70:011 201. |
[19] | Ramer N J et al.[J].Physical Review B:Condensed Matter,2000,62:743. |
[20] | Villas P.Pearson's Handbook of Crystallographic Data for Intermetallic Phases[M].OH:ASM International,1991:865. |
[21] | 张永刚.金属间化合物结构材料[M].北京:国防工业出版社,2001:120. |
[22] | Wasilewski R J .[J].Transactions of the Metallurgical Society of AIME,1966,236:455. |
[23] | Farkas D et al.[J].Modelling and Simulation in Materials Science and Engineering,1995,3:201. |
[24] | Voter A F et al.[J].Proceedings of Symp Mater Res Soc,1987,82:175. |
[25] | Rao A I et al.[J].Proceedings of Symp Mater Res Soc,1991,213:125. |
[26] | Jhi S H et al.[J].Nature,1999,399(6726):132. |
[27] | Chen KY.;Zhao LR.;Rodgers J.;Tse JS. .Alloying effects on elastic properties of TiN-based nitrides[J].Journal of Physics, D. Applied Physics: A Europhysics Journal,2003(21):2725-2729. |
[28] | Pugh S F .[J].Philosophical Magazine,1954,45:823. |
[29] | Wang J Y et al.[J].Physical Review B:Condensed Matter,2004,69:144 108. |
[30] | Pettifor D G .[J].Materials Science and Technology,1992,8(04):345. |
[31] | Levit V I et al.[J].Scripta Materialia,1996,34:1925. |
[32] | 陈律,彭平,李贵发,刘金水,韩绍昌.B2-RuAl点缺陷结构的第一原理计算[J].稀有金属材料与工程,2006(07):1065-1070. |
[33] | 陈律,彭平,韩绍昌.B2-YX(X=Cu,Rh,Ag,In)点缺陷结构及其基本物性的理论计算[J].稀有金属材料与工程,2007(12):2089-2093. |
[34] | Darolia R et al.[J].INTERMETALLICS,1999,7:1195. |
[35] | Würschum R et al.[J].Physical Review B:Condensed Matter,1996,54(02):849. |
[36] | Pike L M et al.[J].Acta Materialia,1997,45(09):3. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%