欢迎登录材料期刊网

材料期刊网

高级检索

基于随机场理论,将纤维和基体性能以及纤维体积分数作为随机场变量,利用局部平均法对随机场进行离散.结合MATLAB与ANSYS的PDS模块对复合材料层合板临界屈曲载荷进行Monte- Carlo模拟,分析各类随机场变量、随机场的相关长度、对称性和边界条件对临界屈曲载荷分散性的影响.结果表明:不同随机场变量对层合板屈曲载荷分散系数影响的程度不同,纤维体积分数的影响最大,其次为纤维性能与基体性能;屈曲载荷的分散系数存在尺寸效应,随着板尺寸的增加,屈曲载荷分散系数逐渐减小;减小相关长度可有效地减小屈曲载荷的分散系数;纤维正对称铺设所引起的屈曲载荷分散系数稍大于反对称铺设情况,而两对边固支板的屈曲载荷分散系数一般大于四边简支板的结果.

参考文献

[1] 陈伟,许希武.复合材料双曲率壳屈曲和后屈曲的非线性有限元研究[J].复合材料学报,2008,25(2):178-187.Chen Wei,Xu Xiwu.Buckling and postbuckling response analysis of the doubly-curved composite shell by nonlinear FEM[J].Acta Materiae Compositae Sinica,2008,25(2):178-187.
[2] 马元春,俸翔,卢子兴.缝纫泡沫夹芯复合材料板的稳定性分析[J].复合材料学报,2011,28(2):201-205.Ma Yuanchun,Feng Xiang,Lu Zixing.Stability analysis of stitched foam-core composite sandwich plate[J]. Acta Materiae Compositae Sinica,2011,28(2):201-205.
[3] 俸翔,马元春,卢子兴.复合材料夹层板屈曲强度的分散性分析[J].复合材料学报,2011,28(1):132-137.Feng Xiang,Ma Yuanchun,Lu Zixing.Analysis of the variation of buckling strengths for composite sandwich plates[J]. Acta Materiae Compositae Sinica,2011,28(1):132-137.
[4] Lin S C. Buckling failure analysis of random composite laminates subjected to random loads[J].International Journal of Solids and Structures,2000,37(51):7563-7576.
[5] Singh B N,Yadav D,Iyengar N G R. Initial buckling of composite cylindrical panels with random material properties[J].Composite Structures,2001,53(1):55-64.
[6] Singh B N,Lal A,Kumar R. Post buckling response of laminated composite plate on elastic foundation with random system properties[J].Communications in Nonlinear Science and Numerical Simulation,2009,14(1):284-300.
[7] Lal A,Singh B N,Kumar R. Effects of random system properties on the thermal buckling analysis of laminated composite plates[J]. Computers & Structures,2009,87(17) : 1119-1128.
[8] Feraboli P, Cleveland T, Stickler P. Stochastic laminate analogy for simulating the variability in modulus of discontinuous composite materials[J].Composites Part A,2010,41(4):557-570.
[9] 闫澍旺,朱红霞,刘 润.关于随机场理论在土木可靠性计算中应用的研究[J].岩土工程学报,2006,28(12):2053-2059.Yan Shuwang,Zhu Hongxia,Liu Run.Application analysis of the random field theory on civil reliability calculation[J].Chinese Journal of Geotechnical Engineering,2006,28 (12):2053-2059.
[10] 刘 润,闫澍旺,王金英.随机场理论在海洋结构物地基可靠度分析中的应用[J].天津大学学报,2003,36(1):63-67.Liu Run,Yan Shuwang,Wang Jinying.Application of random field theory on the foundation reliability analysis of marine structures[J].Journal of Tianjin University,2003,36 (1):63-67.
[11] Akkaya A D, Yucemen M S. Stochastic modeling of earthquake occurrences and estimation of seismic hazard:A random field approach [J]. Probabilistic Engineering Mechanics.2002,17(1):1-13.
[12] Dong X N,Luo Q,Sparkman D M.Random field assessment of nanoscopic inhomogeneity of bone[J].Bone,2010,47(6):1080-1084.
[13] Xi Z,Youn B D.An effective random field characterization for probability analysis and design[C]// Design Engineering Division and Computers in Engineering Division. ASME Conference Proceedings.New York:ASME,2008:1-14.
[14] Basuchar A,Missoum S.A sampling-based approach for probabilistic design with random fields [J]. Computer Methods in Applied Mechanics and Engineering,2009,198(47):3647-3655.
[15] Sadovski Z,Soares C,Teixeira A P. Random field of initial deflections and strength of thin rectangular plates[J].Reliability Engineering & System Safety,2007,92(12):1659-1670.
[16] Broggi M,Schueller G I.Efficient modeling of imperfections for buckling analysis of composite cylindrical shells[J].Engineering Structures,2011,33.:1196-1806.
[17] Papadopoulos V,Papadrakakis M.The effect of material and thickness variability on the buckling load of shells with random initial imperfections [J]. Computer Methods in Applied Mechanics and Engineering,2005,194(12):1405-1426.
[18] Charmpis D C,Schueller G I,Pellissetti M F.The need for linking micromechanics of materials with stochastic finite elements: A challenge for materials science [J].Computational Materials Science,2007,41(1):27-37.
[19] Singh G,Grandhi R V.Propagation of structural random field uncertainty using improved dimension reduction method[C]//American Institute of Aeronautics and Astronautics. AIAA Proceedings.New York:AIAA,2009.
[20] 俸翔,卢子兴.基于随机场的复合材料单层板模量分散性研究[J].机械强度,2010,32(4):622-626.Feng Xiang,Lu Zixing.Studies on the modules discrepancy of single-layer composite plate based on random field theory[J].Journal of Mechanical Strength,2010,32(4):622-626.
[21] 陈虬,刘先斌.随机有限元法及其工程应用[M].成都:西南交通大学出版社,1993:145-157.Chen Qiu,Liu Xianbin.Stochastic finite element method and its engineering application[M].Chengdu:Southwest Jiaotong University Press,1993:145-157.
[22] 安利强,王璋奇,彭震中.二维随机场离散的局部平均法[J].华北电力大学学报,2004,31(3):108-111.An Liqiang,Wang Zhangqi,Peng Zhengzhong.Local average method of discreting two dimensional random field[J].Journal of North China Electric Power University,2004,31(3):108-111.
[23] Beacher G B, Ingra T S. Stochastic FEM in settlement predictions[J].Journal of Geotechnical Engineering Division,1981,107(4):449-463.
[24] 李顺林.复合材料力学引论[M].上海:上海交通大学出版社,1986:162-166.Li Shunlin.Introduction of composite mechanics[M].Shanghai:Shanghai Jiao Tong University Press,1986:162-166.
[25] 俸翔.不确定参数下复合材料力学行为研究[D].北京:北京航空航天大学,2011:50-65.Feng Xiang.Study on the mechanical behavior of composite materials with uncertain parameters[D]. Beijing:Beihang University,2011:50-65.
[26] Baxter S C,Hossain M I,Graham L L.Micromechanics based random material property fields for particulate reinforced composites[J].International Journal of Solids and Structures,2001,38(50):9209-9220.
[27] Graham L L,Gurley K,Masters F.Non-Gaussian simulation of local material properties based on a moving-window technique[J].Probabilistic Engineering Mechanics,2003,18(3):223-234.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%