欢迎登录材料期刊网

材料期刊网

高级检索

基于平纹机织复合材料的细观结构单胞模型,考虑其制备过程中产生的孔隙缺陷为随机分布的特征,通过引入两参数Weibull分布函数,应用Python语言实现了ABAQUS的二次开发,并采用Linde等提出的失效准则,建立了含孔隙缺陷平纹机织复合材料的渐进损伤模型,利用有限元数值方法模拟了其拉伸应力一应变行为,针对该模型,讨论了孔隙缺陷对材料拉伸应力一应变行为的影响,并阐述了该平纹机织复合材料单胞模型在经向拉伸载荷作用下其纤维束的损伤及演化过程。结果表明,该模型给出的数值模拟结果与实验数据吻合较好,证明了模型的有效性,为该类材料的优化设计及其力学性能分析提供了一种有效方法。

Based on the meso-structure of plain weave composites, a micromechanical model was presented to simulate the progressive damage behavior of the plain weave composites that subjected to uniaxial tension. By considering the void defects scattered randomly throughout the matrix that induced during the manufacturing process, the Weibull distribution was implemented to simulate the defects by using Python language in the commercial finite element method (FEM) software ABAQUS standard. The failure criteria proposed by Linde was utilized to set up the progressive damage model, and the stress - strain relation of plain weave composites with defects was simulated. The voids in matrix were chosen for analysis the effect on tensile stress - strain curves of plain weave composite. The micromechanical model allows some detailed interpretation of plain weave composite with defects under warp directional tension, such as the evolution of damage fiber bundle. The numerical results show that the proposed model accurately captures the data from experiments, which demonstrates the validity of the present analytical model. Furthermore, the numerical model provides an alternate way to design and predict the mechanical properties of plain weave composites.

参考文献

[1] Vandeurzen Ph, Ivens J, Verpoest I. A three-dimensional micromechanical analysis of woven-fabric composites Ⅰ-Geometric analysis [J]. Compos Sci Technol, 1996, 56: 1303-1315..
[2] Vandeurzen P, Ivens J, Verpoest I. A three-dimensional micromechanical analysis of woven-fabric composites Ⅱ-Elastic analysis [J]. Compos Sci Technol, 1996, 56: 1317-1327.
[3] Hahn H T, Pandey R. A micromechanics model for thermo-elastic properties of plain weave fabric composites [J]. J Eng Mater Technol, 1994, 116: 517-523.
[4] Aitharaju V R, Averill R C. Three-dimensional properties of woven-fabric composites [J]. Compos Sci Technol, 1999, 59: 1901-1911.
[5] 王 瑞, 王建坤, 武 玲. 平纹织物复合材料的弹性模量预测 [J]. 复合材料学报, 2002, 19(1): 90-94.
[6] 汪海滨, 张卫红, 杨军刚, 等. 考虑孔隙和微裂纹缺陷C/C-SiC编织复合材料等效模量计算 [J]. 复合材料学报, 2008, 25(3): 182-189.
[7] Huang Z M. The mechanical properties of composites reinforced with woven and braided fabrics [J]. Compos Sci Technol, 1999, 60: 479-498.
[8] Peng X Q, Cao J. A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics [J]. Composites Part A, 2005, 36: 859-874.
[9] Zako M, Uetsuji Y, Kurashiki T. Finite element analysis of damage woven fabric composite materials [J]. Composites Science of Technology, 2003, 63: 507-516.
[10] Barbero E J, Lonetti P, Sikkil K K. Finite element continuum damage modeling of plain weave reinforced composites [J]. Composites Part B: Engineering, 2006, 37: 137-147.
[11] 左中鹅, 王 瑞, 徐 磊. 基于有限单元法的平纹织物复合材料强度预测Ⅰ: RVE的有限元模型 [J]. 纺织学报, 2009, 30(12): 45-49.
[12] 徐 焜, 许希武. 三维编织复合材料渐进损伤的非线性数值分析 [J]. 力学学报, 2007, 39(3): 398-407.
[13] 王新峰, 陈国军, 周光明. 三维机织复合材料拉伸损伤 [J]. 南京航空航天大学学报, 2010, 42(1): 1-7.
[14] Hashin Z. Failure criteria for unidirectional fiber composites [J]. Journal of Applied Mechanics, 1980, 47: 329-334.
[15] Linde P, Pleitner J, Boer H D, et al. Modelling and simulation of fiber metal laminates//ABAQUS User’s Conference. Boston, Massachustts: , 2004: 421-439.
[16] Duvaut G, Lions J L. Inequalities in mechanics and physics [M]. Berlin: Springer, 1976.
[17] Xia Z H, Zhang Y F, Ellyin F. A unified periodical boundary conditions for representative volume elements of composites and applications [J]. International Journal of Solids and Structures, 2003, 40: 1907-1921.
[18] Xia Z H, Zhou C W, Yong Q L, et al. On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites [J]. International Journal of Solids and Structures, 2006, 43: 226-278.
[19] ABAQUS users manual [M]. 6.3 ed. Rhode Island: Hibbitt Karlsson & Sorensen Inc, 2002.
[20] 唐春安, 傅宇方, 朱万成. 界面性质对颗粒增强复合材料破坏模式影响的数值摸拟分析 [J]. 复合材料学报, 1999, 16(3): 110-117.
[21] Henninger F, Ye L, Friedrich K. Deconsolidation behavior of glass fiber-polyamide 12 composite sheet material during post processing [J]. Plastics, Rubber and Composites and Applications, 1998, 27: 287-292.
[22] 汪赫男, 张佐光, 顾轶卓, 等. 环氧复合材料层板热压成型孔隙缺陷影响因素 [J]. 复合材料学报, 2007, 24(5): 55-60.
[23] Herakovich C T. Mechanics of fibrous composites [M]. New York: John Wiley & Sons, Inc. , 1998: 220-225.
[24] 王新峰. 机织复合材料多尺度渐进损伤研究 . 南京: 南京航空航天大学, 2007.
[25] Lapczyk I, Hurtado A J. Progressive damage modeling in fiber-reinforced materials [J]. Composites Part A, 2007, 38: 2333-2341.
[26] Fang G D, Liang J, Wang B L. Progressive damage and nonlinear analysis of 3D four-directional braided composites under unidirectional tension [J]. Composites Structure, 2009, 89: 126-133.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%