为了提高碳酸氢铵-反向电渗析模块的产电性能,对其构型进行了优化,并分析了其能量效率的变化特点.结果表明,当碳酸氢铵-反向电渗析模块采用5对离子交换膜及0.2 mm厚的隔板时,其功率密度可达最大值0.85 W/m2(不计电极系统能量损耗).膜对数量不超过8时,开路电压、内阻及最大功率密度均随膜对数的增加而逐渐升高,且膜对数与开路电压、内阻均呈现出良好的线性关系;膜对数量大于8时,装置产电性能逐渐变差.对于相同种类的隔板,采用较薄的隔板能减小装置的内阻,其产电性能更好;对于同等厚度的隔板,编织结构紧密的隔板更优.实验中装置能量效率稳定于30%左右,表明其在能量利用方面具有一定优势.
参考文献
[1] | Pattle R E .Production of electric power by mixing fresh and salt water in the hydroelectric pile[J].NATURE,1954,174(4431):660. |
[2] | Post J W;Hamelers H V M;Buisman C J N .Influence of multivalent ions on power production from mixing salt and fresh water with a reverse electrodialysis system[J].Journal of Membrane Science,2009,330(1-2):65-72. |
[3] | M.Turek;B.Bandura .Renewable energy by reverse electrodialysis[J].Desalination: The International Journal on the Science and Technology of Desalting and Water Purification,2007(1/3):67-74. |
[4] | Roland D. Cusick;Younggy Kim;Bruce E. Logan .Energy Capture from Thermolytic Solutions in Microbial Reverse-Electrodialysis Cells[J].Science,2012(Mar.23 TN.6075):1474-1477. |
[5] | Luo, X.;Cao, X.;Mo, Y.;Xiao, K.;Zhang, X.;Liang, P.;Huang, X..Power generation by coupling reverse electrodialysis and ammonium bicarbonate: Implication for recovery of waste heat[J].Electrochemistry communications,2012:25-28. |
[6] | Huijuan Chen;D. Yogi Goswami;Elias K. Stefanakos .A review of thermodynamic cycles and working fluids for the conversion of low-grade heat[J].Renewable & sustainable energy reviews,2010(9):3059-3067. |
[7] | Bertrand F. Tchanche;Gr. Lambrinos;A. Frangoudakis;G. Papadakis .Low-grade heat conversion into power using organic Rankine cycles - A review of various applications[J].Renewable & sustainable energy reviews,2011(8):3963-3979. |
[8] | J. Veerman;M. Saakes;S.J. Metz .Reverse electrodialysis: A validated process model for design and optimization[J].Chemical engineering journal,2011(1):256-268. |
[9] | Veerman J;Saakes M;Metz S J et al.Reverse electrodialysis:Performance of a stack with 50 cells on the mixing of sea and river water[J].Journal of Membrane Science,2009,327(1-2):136-144. |
[10] | IOOST VEERMAN;MICHEL SAAKES;SYBRAND J. METZ .Electrical Power from Sea and River Water by Reverse Electrodialysis: A First Step from the Laboratory to a Real Power Plant[J].Environmental Science & Technology: ES&T,2010(23):9207-9212. |
[11] | Vermaas D A;Saakes M;Nijmeijer K .Power generation using profiled membranes in reverse electrodialysis[J].Journal of Membrane Science,2011,385-386:234-242. |
[12] | JAN W. POST;HUBERTUS V. M. HAMELERS;CEES J. N. BUISMAN .Energy Recovery from Controlled Mixing Salt and Fresh Water with a Reverse Electrodialysis System[J].Environmental Science & Technology: ES&T,2008(15):5785-5790. |
[13] | PIOTR DLUGOLECKI;ANTOINE GAMBIER;KITTY NIJMEIJER .Practical Potential of Reverse Electrodialysis As Process for Sustainable Energy Generation[J].Environmental Science & Technology: ES&T,2009(17):6888-6894. |
[14] | Veerman, J.;Saakes, M.;Metz, S.J.;Harmsen, G.J. .Reverse electrodialysis: Evaluation of suitable electrode systems[J].Journal of Applied Electrochemistry,2010(8):1461-1474. |
[15] | Dlugolecki P;Dabrowska J;Nijmeijer K et al.Ion conductive spacers for increased power generation in reverse electrodialysis[J].Journal of Membrane Science,2010,347(1-2):101-107. |
[16] | Veerman J;Jong R M D;Saakes M et al.Reverse electrodialysis:Comparison of six commercial membrane pairs on the thermodynamic efficiency and power density[J].Journal of Membrane Science,2009,343(1-2):7-15. |
[17] | Younggy Kim;Bruce E. Logan .Microbial Reverse Electrodialysis Cells for Synergistically Enhanced Power Production[J].Environmental Science & Technology: ES&T,2011(13):5834-5839. |
[18] | Veerman J;Post JW;Saakes M;Metz SJ;Harmsen GJ .Reducing power losses caused by ionic shortcut currents in reverse electrodialysis stacks by a validated model[J].Journal of Membrane Science,2008(1/2):418-430. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%