欢迎登录材料期刊网

材料期刊网

高级检索

按照一般的无序理论,在非关联一维无序材料中不存在扩展态,在绝对零度下,电子的波函数是局域的,系统表现为绝缘体.在关联无序系统中,格点能量之间的长程关联,即对角关联,能导致扩展的波函数并由此导致系统的导电性.当关联强度于某一阈值,可以发现在热力学极限之下有存在于较宽能带范围内的扩展态,此阈值即为体系的金属-绝缘体转变临界点.考虑格点之间的长程相互作用势,即非对角关联时,在一维系统中通过使用传输矩阵方法,可以获得电子态的一些本质效应,长程跳跃可以改变系统的有效维度并能导出一维体系中存在有依赖于关联强度的金属-绝缘体转变.

参考文献

[1] Anderson P W .Absence of diffusion in certain random lattice[J].Physical Review,1958,109:1492.
[2] Miller A;Abrahams E .Impurity conduction at low concentrations[J].Physical Review,1960,120:745.
[3] Samukhin AN.;Jastrabik L.;Epstein AJ.;Prigodin VN. .Hopping conductivity of a nearly 1D fractal: A model for conducting polymers[J].Physical Review.B.Condensed Matter,1998(17):11354-11370.
[4] Klause Maschke et al.Electron transport along a spatially disordered chain in the presence of dissipation[J].Physical Review B,1994,49:2295.
[5] Cordes H;Baranovskii S D .One dimensional hopping transport in disorder organic solids[J].Physical Review B,2001,63:194.
[6] 徐慧,宋韦璞,李新梅.一维无序体系电子跳跃导电研究[J].物理学报,2002(01):143-147.
[7] 徐慧,宋祎璞.Study of ac hopping conductivity on one-dimensional nanometre systems[J].中国物理(英文版),2002(12):1294-1299.
[8] 徐慧,宋祎璞.一维无序体系的交流跳跃导电[J].物理学报,2002(08):1798-1803.
[9] 徐慧 .一维无序系统本征矢的解法[J].计算物理,1991,8:295.
[10] Brouwer PW.;Simons BD.;Altland A.;Mudry C. .Delocalization in coupled one-dimensional chains[J].Physical review letters,1998(4):862-865.
[11] Stefanie Russ .Scaling of the localization length in linear electronic and vibrational systems with long-range correlated disorder[J].Physical Review B,2002,66:012204.
[12] Dominguez-Adame F.;Malyshev VA.;de Moura FABF.;Lyra ML. .Bloch-like oscillations in a one-dimensional lattice with long-range correlated disorder - art. no. 197402[J].Physical review letters,2003(19):7402-0.
[13] Sona Prakash;Shlomo Havlin et al.Structural and dynamical properties of long-range correlated percolation[J].Physical Review A,1992,46:1724.
[14] Hernan A Makse et al.Method for generating long-range correlations for large systems[J].Physical Review E,1996,53:5445.
[15] Francisco A B F de Moura;Marcelo L Lyra .Delocalization in the 1D Anderson model with long-range correlated disorder[J].Physical Review Letters,1998,81:3735.
[16] Blavats'ka V.;Holovatch Y.;von Ferber C. .Polymers in long-range-correlated disorder - art. no. 041102[J].Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics,2001(4 Part 1):1102-0.
[17] Carpena P;Bernaola-Galvan P;Ivanov PC;Stanley HE .Metal-insulator transition in chains with correlated disorder[J].Nature,2002(6901):955-959.
[18] Usatenko O V;Yampolshii V A .Binary N-step markov chains and long-range correlated ystems[J].Physical Review Letters,2003,90:110601.
[19] Karpo V G .Critical disorder and phase transitions in random diode arrays[J].Physical Review Letters,2003,91:226806.
[20] Hennig D;Archilla J F R;Agarwal J .Nonlinear charge transport mechanism in periodic and disordered DNA[J].Physica D-Nonlinear Phenomena,2002,128:1.
[21] Yu ZG.;Song XY. .Variable range hopping and electrical conductivity along the DNA double helix[J].Physical review letters,2001(26):6018-6021.
[22] Stephan Roche;Dominique Bicout;Enrique Macia et al.Long-range correlations in DNA.scaling properties and charge transfer efficiency[J].Physical Review Letters,2003,91:228101.
[23] Xiong Shijie;Zhang Guiping .Scaling behavior of the metalinsulator transition in one-dimensional disordered systems with long-range hopping[J].Physical Review B,2003,68:174201.
[24] Rodriguez A.;Malyshev VA.;Sierra G.;Martin-Delgado MA. Rodriguez-Laguna J.;Dominguez-Adame F. .Anderson transition in low-dimensional disordered systems driven by long-range nonrandom hopping - art. no. 027404[J].Physical review letters,2003(2):7404-0.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%