欢迎登录材料期刊网

材料期刊网

高级检索

为开发室温气敏传感器材料,以Zn(NO3)2.6H2O为锌源、尿素为沉淀剂,在制备水合碱式碳酸锌(Zn4CO3(OH)6.H2O)的过程中加入羧基化的MWCNTs(MWCNT-COOH),焙烧制备了MWCNTs/ZnO复合材料.采用XRD,SEM和TEM等对其进行了分析.结果表明:复合材料中MWCNTs分散均匀,ZnO呈多孔纳米片状,纳米片由多个尺寸在10~20 nm的ZnO颗粒组成;在室温、空气湿度为50%的氛围中测试复合材料对NO的气敏响应发现,复合材料对体积浓度1×10-4的NO气敏响应灵敏度大约是MWCNT-COOH的3倍,明显高于MWCNT-COOH;对比加入不同量MWCNT-COOH制备的3种复合材料对NO的气敏性可知,加入200 mg MWCNT-COOH所制备的复合材料对低浓度(体积浓度≤50×10-6)的NO气体表现出较高的灵敏度.

To develop sensor materials at room temperature, multi-walled carbon nanotubes and ZnO composites were synthesized by using urea, zinc nitrate and carboxylated MWCNTs( MWCNT- COOH) as raw materials with homogeneous precipitation method and calcination. The structures and morphologies of the MWCNTs/ZnO composites were characterized by XRD, SEM and TEM. The results showed that a homogeneous distribution of MWCNTs in the composites was observed while ZnO existed as porous nanosheets consisting of many ZnO nan- opartieles. The sensor response of the composites to NO was examined at room temperature with a relative hu- midity of 50%. The MWCNTs/ZnO sensor's sensitivity was increased by a factor of three in comparison with that of MWCNT- COOH for NO at 1 × 10-4 ,because the porous ZnO nanosheets had larger surface area and the electron transfer between MWCNTs and ZnO could facilitate the decrease of the MWCNTs resistance. Hy- brid material with 200 mg MWCNT -- COOH exhibits higher response than other hybrid materials for NO de- tection at low concentrations ( ≤ 50×10-6).

参考文献

[1] Hongwei Yan;Jianbo Hou;Zhengping Fu;Beifang Yang;Pinghua Yang;Kaipeng Liu;Meiwang Wen;Youjun Chen;Shengquan Fu;Fanqing Li .Growth and photocatalytic properties of one-dimensional ZnO nanostructures prepared by thermal evaporation[J].Materials Research Bulletin: An International Journal Reporting Research on Crystal Growth and Materials Preparation and Characterization,2009(10):1954-1958.
[2] Wei Xie;Yuanzhi Li;Wei Sun .Surface modification of ZnO with Ag improves its photocatalytic efficiency and photostability[J].Journal of Photochemistry and Photobiology, A. Chemistry,2010(2/3):149-155.
[3] Yanping Zhang;Xiaowei Sun;Likun Pan;Haibo Li;Zhuo Sun;Changqing Sun;Beng Kang Tay .Carbon nanotube–ZnO nanocomposite electrodes for supercapacitors[J].Solid state ionics,2009(32/35):1525-1528.
[4] Zhang WD .Growth of ZnO nanowires on modified well-aligned carbon nanotube arrays[J].Nanotechnology,2006(4):1036-1040.
[5] Chrissanthopoulos A;Baskoutas S;Bouropoulos N;Dracopoulos V;Tasis D;Yannopoulos SN .Novel ZnO nanostructures grown on carbon nanotubes by thermal evaporation[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2007(24):8524-8528.
[6] Li Li;Gang Wu;Bo-Qing Xu .Electro-catalytic oxidation of CO on Pt catalyst supported on carbon nanotubes prelreated with oxidative acids[J].Carbon: An International Journal Sponsored by the American Carbon Society,2006(14):2973-2983.
[7] Yang Liu;Jian-er Zhou;Andre Larbot;Michel Persin .Preparation and characterization of nano-zinc oxide[J].Journal of Materials Processing Technology,2007(1/3):379-383.
[8] Van Hieu N;Thuy LTB;Chien ND .Highly sensitive thin film NH3 gas sensor operating at room temperature based on SnO2/MWCNTs composite[J].Sensors and Actuators, B. Chemical,2008(2):888-895.
[9] Li, W.;Jung, H.;Hoa, N.D.;Kim, D.;Hong, S.-K.;Kim, H. .Nanocomposite of cobalt oxide nanocrystals and single-walled carbon nanotubes for a gas sensor application[J].Sensors and Actuators, B. Chemical,2010(1):160-166.
[10] Ahn, MW;Park, KS;Heo, JH;Kim, DW;Choi, KJ;Park, JG .On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity[J].Sensors and Actuators, B. Chemical,2009(1):168-173.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%