欢迎登录材料期刊网

材料期刊网

高级检索

利用高频感应加热化学气相沉积(HFCVD)工艺,以H2稀释的SiH4作为反应气体源,分别在n-(111)Si衬底上常规热生长的SiO2层、织构的SiO2层和纳米晶粒多晶Si薄膜表面上,制备了具有均匀分布的大晶粒多晶Si膜.采用扫描电子显微镜(SEM)和X射线衍射(XRD)等检测手段,测量和分析了沉积膜层的表面形貌、晶粒尺寸、密度分布与择优取向等结构特征.结果表明,多晶Si膜中Si晶粒的尺寸大小和密度分布不仅与衬底温度、SiH4浓度与反应气压等工艺参数有关,而且强烈依赖于衬底的表面状态.本实验获得的最好的薄膜中,Si晶粒平均尺寸约为2.3 μm,密度分布约为3.8×107/cm2.对薄膜的沉积机理分析表明,衬底表面上Si原子基团的吸附、迁移、成核与融合等热力学过程支配着大晶粒多晶Si膜的生长.

参考文献

[1] Bergmann R.B. .Crystalline Si thin-film solar cells: a review[J].Applied physics, A. Materials science & processing,1999(2):187-194.
[2] Catchpole KR.;Weber KJ.;Blakers AW.;McCann MJ. .A review of thin-film crystalline silicon for solar cell applications. Part 2: Foreign substrates [Review][J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,2001(2):173-215.
[3] Tawada Y.;Yamagishi H.;Yamamoto K. .Mass productions of thin film silicon PV modules[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,2003(1/4):647-662.
[4] Shah A.;Meier J.;Vallat-Sauvain E.;Wyrsch N.;Kroll U.;Droz C.;Graf U. .Material and solar cell research in microcrystalline silicon[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,2003(1/4):469-491.
[5] Green MA.;Wang A.;Wenham SR.;Zhao J. .Progress and outlook for high-efficiency crystalline silicon solar cells[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,2001(1/4):9-16.
[6] 彭英才,姚国晓,马蕾,王侠.提高多晶Si薄膜太阳电池转换效率的途径[J].微纳电子技术,2008(04):187-192,197.
[7] Matsuyama T;Terada N;Baba T et al.High-quality Polycrystalline Silicon Thin Film Prepared by a Solid Phase Crystallization Method[J].Journal of Non-Crystalline Solids,1996,198-200(02):940-944.
[8] Yao RH.;Wu P.;Yu CY.;Shi WZ.;Lin KX.;Lin XY. .Influence of hydrogen dilution on low-temperature polycrystalline silicon formation using RF excitation SiH4/H-2 plasma[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,2000(1/2):187-192.
[9] Puglisi R A;Tanabe H;Chen C M et al.Large-grained Polycrystalline Si Films Obtained by Selective Nucleation and Solid Phase Epitaxy[J].Materials Science and Engineering B:Solid State Materials for Advanced Technology,2000,73(1-3):212-217.
[10] Li XX.;Wong M.;Zohar Y. .Fabrication and characterization of nickel-induced laterally crystallized polycrystalline silicon piezo-resistive sensors[J].Sensors and Actuators, A. Physical,2000(1/3):281-285.
[11] Song In-Hyuk;Han Min-Kpp .Low Temperature Poly-Si TFTs for Display Application[J].Current Applied Physics,2003,3(04):363-366.
[12] Swati Ray;Sumita Mukhopadhyay;S. C. Saha;Sukti Hazra .Properties of polycrystalline silicon films prepared from fluorinated precursors[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,1999(1/2):7-11.
[13] Lee B;Quinn L J;Baine P T et al.Polycrystalline Silicon Film Growth in a SiF4/SiH4/H2 Plasma[J].Thin Solid Films,1999,337(1-2):55-58.
[14] Fuyuki T .Research Status in Thin-film Crystalline Si Solar Cells[J].Current Applied Physics,2001,1(06):515-519.
[15] 刘丰珍,朱美芳,冯勇,刘金龙,汪六九,韩一琴.等离子体-热丝CVD技术制备多晶硅薄膜[J].半导体学报,2003(05):499-503.
[16] T. Baron;F. Mazen;J.M. Hartmann;P. Mur;R.A. Puglisi;S. Lombardo;G. Ammendola;C. Gerardi .Growth and characterization of LPCVD Si quantum dots on insulators[J].Solid-State Electronics,2004(9):1503-1509.
[17] Serge Ecoffey;Didier Bouvet;Adrian M Ionescu .Low-pressure chemical vapour deposition of nanograin polysilicon ultra-thin films[J].Nanotechnology,2002(3):290-293.
[18] 王阳元;T I 卡明斯.多晶Si薄膜及其在集成电路中的应用[M].北京:科学出版社,1988:40.
[19] 彭英才,马蕾,康建波,范志东,简红彬.纳米晶粒多晶Si薄膜的低压化学气相沉积[J].人工晶体学报,2006(03):560-564.
[20] 彭英才,池田弥央,宫崎诚一.Si纳米量子点的LPCVD自组织化形成及其生长机理研究[J].物理学报,2003(12):3108-3113.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%