采用基于密度泛函理论的Dmol4.1程序包,通过计算替换Mg、形成Mg空位、体系移走H原子所需能量及电子结构的改变,对金属氟化物改善MgH2体系解氢性能的机制进行探讨.结果发现:形成Mg空位所需能量明显高于Fe、Ti、Zr、V、Ni、Nb、Cr、Cu替代Mg所需能量,与形成Mg空位相比,低温下替代Mg更利于MgH2体系解氢:NiF2、NbF5、ZrF4作为催化剂利于MgH2体系解氢,理论计算的强弱顺序与实验结果一致:NiF2、NbF5、ZrF4金属氟化物改善MgH2体系解氢性能主要在于NiF2中的Ni、NbH中的Nb、ZrH2中的Zr分别替代MgH2中的Mg,加速了化学反应:NiF2+3MgH2=MgF2+Mg2NiH4、2NbF5+5MgH2=5MgF2+2NbH+4H2、ZrF4+2MgH2=2MgF2+ZrH2向右进行,使结构稳定的MgH2发生转变生成了Mg2NiH4、NbH和ZrH2等氢化物.电子态密度的进一步分析结果发现:Ni、Nb、Zr替代MgH2体系中的Mg,使超胞中心原子与其周围第1、2近邻H原子组成的八面体区域,成键的总电子数在费米能级以下按Ni、Ti、Zr的替代顺序增多,表明对应MgH2体系的结构稳定性按Ni、Ti、Zr的替代顺序增强,而解氢按Ni、Ti、Zr的替代顺序在下降,较好解释了NiF2、NbF5、ZrF4利于MgH2体系解氢,理论计算的强弱顺序与实验结果的一致性.
参考文献
[1] | Zaluska A;Zaluski L;Str(o)m-Olsen J O .[J].Journal of Alloys and Compounds,1999,288(1-2):217. |
[2] | Jurczyk M;Smardz L;Okonska I et al.[J].Int J HydNgen Energy,2008,33(01):374. |
[3] | Shang C X;Bououdina M;Song Y et al.[J].International Journal of Hydrogen Energy,2004,29(01):73. |
[4] | Huot J;Hayakawa H;Akiba E .[J].Journal of Alloys and Compounds,1997,248(1-2):164. |
[5] | Gennari F C;Castro F J;Urretavizcaya G et al.[J].Journal of Alloys and Compounds,2002,334(1-2):277. |
[6] | Liang G.;Huot J. .Hydrogen storage in mechanically milled Mg-LaNi_5 and MgH_2-LaNi_5 composites[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2000(1/2):261-265. |
[7] | Mandal P;Dutta K;Ramakrishna K et al.[J].Journal of Alloys and Compounds,1992,184(01):1. |
[8] | Wang P;Wang A M;Ding B Z et al.[J].Journal of Alloys and Compounds,2002,334(1-2):243. |
[9] | Pelletier J F;Huot J;Sutton M et al.[J].Physical Review B:Condensed Matter,2001,63:052103. |
[10] | Jin S A;Shim J H;Cho Y W et al.[J].Journal of Power Sources,2007,172(1-2):859. |
[11] | Song Y;Guo Z X;Yang R .[J].Physical Review B:Condensed Matter,2004,69:094205. |
[12] | Li S;Jena P;Ahuja R .[J].Physical Review B:Condensed Matter,2006,74:132106. |
[13] | 周惦武,张健,彭平,刘金水.球磨条件下Fe合金化改善MgH2体系性能的机理[J].中国有色金属学报,2008(12):2233-2244. |
[14] | ZHOU Dianwu,PENG Ping,LIU Jinshui.First-principles calculation of dehydrogenating properties of MgH2-V systems[J].中国科学E辑(英文版),2006(02):129-136. |
[15] | ZHOU DianWu,LIU JinShui,PENG Ping.Study on H atoms diffusion and adsorption properties of MgH2-V systems[J].中国科学E辑(英文版),2008(07):979-988. |
[16] | Perdew J P;Burke K;Emzerhof M .[J].Physical Review Letters,1996,77(18-28):3865. |
[17] | Pack J D;Monkhorst H J .[J].Physical Review B:Condensed Matter,1977,16(4-15):1748. |
[18] | Delley B .[J].Journal of Chemical Physics,1991,94(11):7245. |
[19] | Sahu BR .Electronic structure and bonding or ultralight LiMg[J].Materials Science & Engineering, B. Solid-State Materials for Advanced Technology,1997(1):74-78. |
[20] | Medvedeva M I;Gomostyrev Y N;Novikov D L et al.[J].Acta Materialia,1998,46(1-2):3433. |
[21] | Zhou DW;Li SL;Varin RA;Peng P;Liu JS;Yang F .Mechanical alloying and electronic simulations of 2Mg-Fe mixture powders for hydrogen storage[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2006(1-2):306-315. |
[22] | 周惦武,彭平,刘金水.MgH2-Ti体系解氢能力的第一原理计算[J].中国有色金属学报,2005(09):1403-1410. |
[23] | Bogdanoví(c) B;Bohmhammel K;Christ B et al.[J].Journal of Alloys and Compounds,1999,282(1-2):84. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%