对热变形AZ31镁合金的显微组织、晶粒尺寸分布,平均晶粒尺寸,再结晶晶粒数目以及变形织构随退火时间的变化进行了定量分析,研究了不同热变形量AZ31镁合金在503 K的等温退火行为.结果表明:热变形AZ31镁合金的细晶组分随着退火时间的延长不断降低,退火过程按退火温度可分为孕育、再结晶急速长大和晶粒正常长大三个阶段,且各阶段的其长短几乎不受变形程度的影响.变形形成的微观织构在整个退火过程中几乎没有变化,说明热变形镁合金在退火过程中没有新核形成,即为连续静态再结晶.
参考文献
[1] | D.Lahaie,J.D.Embury,M.M.Chadwick,G.T.Gray,A note on the deformation of fine grained magnesium alloys,Scripta Metallurgica et Materialia,27(2),139(1992) |
[2] | J.Xing,H.Sohde,X.Yang,H.Miura,T.Sakai,Ultra-fine grain development in magnesium alloy AZ31 during multidirectional forging under decreasing temperature conditions,Materials Transactions,46(20),1646(2005) |
[3] | X.Yang,H.Miura,T.Sakai,Dynamic evolution of new grains in magnesium alloy AZ31 during hot deformation,Materials Transactions,44(1),197(2003) |
[4] | M.R.Barnett,M.D.Nave,C.J.Bettles,Deformation microstructures and textures of some cold rolled Mg alloys,Materials Science and Engineering,A386,205(2004) |
[5] | H.Watanabe,T.Mukai,K.Ishikawa,Effect of temperature of differential speed rolling on room temperature mechanical properties and texture in an AZ31 magnesium alloy,Journal of Materials Processing Technology,182,644(2007) |
[6] | A.Styczynski,Ch.Hartig,J.Bohlen,D.Letzig,Cold rolling textures in AZ31 wrought magnesium alloy,Scripta Materialia,50,943(2004) |
[7] | S.R.Agnew,O.Duygnlu,Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B,International journal of plasticity,21,1161(2005) |
[8] | F.Kaiser,D.Letzig,J.Bohlen,A.Styczynski,Ch.Hartig,K.U.Kainer,in Magnesium Alloys 2003,Anlsotropic Properties of Magnesium Sheet AZ31,edited by Y.Kojima,T.Aizawa,K.Higashi,S.Kamado(Switzerland,Trans.Tech.Pub.,2003)p.315 |
[9] | R.D.Doherty,D.A.Hughes,F.J.Humphreys,J.J.Jonas,D.J.Jensen,M.E.Kassner,W.E.King,T.R.Mcnelley,H.J.Mcqueen,A.D.Rollett,Current issues in recrystallization:a review,Materials Science and Engineering,A238,219(1997) |
[10] | T.Mohri,M.Mabuchi,N.Nakamura,T.Asahina,H.wasaki,T.Aizawa,K.Higashi,Microstructural evolution and superplasticity of rolled Mg-9Al-1Zn,Materials Science and Engineering,A290(1-2),139(2000) |
[11] | R.Kaibyshev,A.Galiyev,O.Sitdikov,On the possibility of producing a nanocrystalling structure in magnesium and magnesium alloys,Nanostructured Materials,6(5-8),621(1995) |
[12] | X.Yang,H.Miura,T.Sakai,Isochronal Annealing Behaviors of Magnesium Alloy AZ31 After Hot Deformation,Materials Transactions,46(12),2981(2005) |
[13] | X.Li,P.Yang,L.N.Wang,L.Meng,F.Cui,Orientational analysis of static recrystallization at compression twins in a magnesium alloy AZ31,Materials Science and Engineering,A517,160(2009) |
[14] | A.G.Beer,M.R.Barnett,Microstructure evolution in hot worked and annealed magnesium alloy AZ31,Materials Science and Engineering A,485(1-2),318(2008) |
[15] | M.T.pr(m)erez-Prado,O.A.Ruano,Texture evolution during annealing of magnesium AZ31 alloy,Scripta Mater,46(2),49(2002) |
[16] | G.Gottstein,T.AI-Samman,Texture Development in pure mg and mg alloy AZ31,Materials Science Forum,495/497,623(2005) |
[17] | T.Al-Samman.G.Gottstein,Deformation conditions and stability of the basal texture in magnesium,Materials Science Forum,439/543,3401(2007) |
[18] | T.Al-Samman,B.Ahmad,G.Gottstein,Uniaxial and plane strain compression behaviour of magnesium alloy AZ31:a comparative study,Materials Science Forum,550,229(2007) |
[19] | T.Al-Samman,Comparative study of the deformation behavior of hexagonal magnesium-lithium alloys and a conventional magnesium AZ31 alloy,Acta Materialia,57(7),2229(2009) |
[20] | J.H.Driver,Stability of nanostructures metals and alloys,Scripta Mater,51(8),819(2004) |
[21] | F.J.Humphreys.M.Hatherly,Recrystallization and Related Annealing Phenomena,2nd ed,(Oxford,UK,Pergamon Press,2004)p.451 |
[22] | M.Ferry,N.Burhan,Structural and kinetic aspects of continuous grain coarsening in a fine-grained Al-0.3Sc alloy,Acta Materialia,55(10),3479(2007) |
[23] | H.Jazaeri,F.J.Humphreys,The transition from discontinuous to continuous recrystallization in some aluminium alloys:Ⅰ-the deformed state,Acta Materialia,52 (11),3239(2004) |
[24] | H.Jazaeri,F.J.Humphreys,The transition from discontinuous to continuous recrystallization in some aluminium alloys:Ⅱ-annealing behaviour,Acta Materialia,52(11),3251(2004) |
[25] | F.J.Humphreys,A unified theory of recovery,recrystallization and grain growth,basedon the stability and growth of cellular microstructures-Ⅰ.The basic model,Acta Materialia,45(10),4231(1997) |
[26] | A.Takayama,X.Yang,H.Miura,T.Sakai,Continuous static recrystallization in ultrafine-grained copper processed by multi-directional forging,Materials Science and Engineering A,478(1-2),221(2008) |
[27] | S.E.Ion,F.J.Humphreys,S.H.White,Dynamic recrystallization and the development of microstructure during the high temperature deformation of magnesium,Acta Metallurgica,30,1909(1982) |
[28] | A.Galiyev,R.Kaibyshev,G.Gottstein,Correlation of plastic deformation and dynamic recrystallization in magneslum alloy ZK60,Acta Materialia,49,1199(2001) |
[29] | YANG Xuyue,SUN Zhengyan,Static recrystallization of magnesium alloy AZ31 after severe deformation,The Chinese Journal of Nonferrous Metals,19(8),1366(2009)(杨续跃,孙争艳,强变形AZ31镁合金的静态再结晶,中国有色金属学报,19(8),1366(2009)) |
[30] | A.M.Wusatowska-Sarnek,H.Miura,T.Sakai,Influence of deformation temperature on microstructure evolution and static recrystailization of polycrystalline copper,Materials Transactions,42(11),2452(2001) |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%