采用氩电弧等离子体法制备不同粒径的炭包铜纳米粒子,研究其抗氧化性能、在水介质中的分散性能和导热性能.结果表明:炭层的保护作用赋予铜晶体更高的抗氧化性能;非晶炭层的特殊结构可通过双氧水化学处理使其表面产生羧基和羟基,提高其在水介质中的分散性能;炭包铜粒径越小,纳米流体导热性能越好.
参考文献
[1] | Sartre V;Lallemand M .Enhancement of thermal contact conductance for eletronic systems[J].Applied Thermal Engineering,2001,21:221-235. |
[2] | Grujicic M;Zhao CL;Dusel EC .The effect of thermal contact resistance on heat management in the electronic packaging[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2005(1/3):290-302. |
[3] | C.-K. Leong;D.D.L. Chung .Carbon black dispersions and carbon-silver combinations as thermal pastes that surpass commercial silver and ceramic pastes in providing high thermal contact conductance[J].Carbon: An International Journal Sponsored by the American Carbon Society,2004(11):2323-2327. |
[4] | Chia-Ken Leong;D.D.L. Chung .Carbon black dispersions as thermal pastes that surpass solder in providing high thermal contact conductance[J].Carbon: An International Journal Sponsored by the American Carbon Society,2003(13):2459-2469. |
[5] | Huaqing Xie;Motoo Fujii;Xing Zhang .Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture[J].International Journal of Heat and Mass Transfer,2005(14):2926-2932. |
[6] | Gao L;Zhou XF .Differential effective medium theory for thermal conductivity in nanofluids[J].Physics Letters, A,2006(3/6):355-360. |
[7] | Krishnamurthy S;Lhattacharya P;Phelan PE;Prasher RS .Enhanced mass transport in nanofluids[J].Nano letters,2006(3):419-423. |
[8] | Hyun Uk Kang;Sung Hyun Kim;Je Myung Oh .ESTIMATION OF THERMAL CONDUCTIVITY OF NANOFLUID USING EXPERIMENTAL EFFECTIVE PARTICLE VOLUME[J].Experimental heat transfer,2006(3):181-191. |
[9] | Keblinski P;Phillpot S R;Choi S U S .Meehanisms of heat flow in suspensions of nano-sized particles[J].International Journal of Heat and Mass Transfer,2002,45:855-863. |
[10] | Pawel Keblinski;Jeffrey A. Eastman;David G. Cahill .Nanofluids for thermal transport[J].Materials Today,2005(6):36-44. |
[11] | Zhu, DS;Li, XF;Wang, N;Wang, XJ;Gao, JW;Li, H .Dispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluids[J].Current applied physics: the official journal of the Korean Physical Society,2009(1):131-139. |
[12] | Murshed S M S;Leong K C;Yang C .Enhanced thermal conductivity of TiO2-water based nanofluids[J].International Journal of Thermal Sciences,2005,44:367-373. |
[13] | Tang F Q;Huang X X;Zhang Y F et al.Study on rheological properties of nano size zirconia suspension[J].Materials Science and Engineering,1999,17:8-11. |
[14] | 贾成志,范益群,漆虹,徐南平.纳米氧化锆在水中分散性研究[J].化学工程,2005(05):47-49. |
[15] | Li XF;Zhu DS;Wang XJ .Evaluation on dispersion behavior of the aqueous copper nano-suspensions[J].Journal of Colloid and Interface Science,2007(2):456-463. |
[16] | 刘少炎 .纳米碳包铁磁性颗粒的制备、表征及其表面化学修饰的研究[D].华中科技大学,2006. |
[17] | William Evans;Jacob Fish;Pawel Keblinski .Role of Brownian motion hydrodynamics on nanofluid thermal conductivity[J].Applied physics letters,2006(9):093116-1-093116-3-0. |
[18] | Seok Pil Jang;Stephen U. S. Choi .Role of Brownian motion in the enhanced thermal conductivity of nanofluids[J].Applied physics letters,2004(21):4316-4318. |
[19] | Nandy Putra;Wilfried Roetzel;Sarit K. Das .Natural convection of nano-fluids[J].Heat and mass transfer,2003(8/9):775-784. |
[20] | Xue QZ. .Model for effective thermal conductivity of nanofluids[J].Physics Letters, A,2003(5/6):313-317. |
[21] | Yu W;Choi SUS .The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton-Crosser model[J].Journal of nanoparticle research: An interdisciplinary forum for nanoscale science and technology,2004(4):355-361. |
[22] | Koo J;Kleinstreuer C .A new thermal conductivity model for nanofluids[J].Journal of Nanoparticle Research,2004,6:577-588. |
[23] | Eisntein A.Investigations on the theory of the brownian movement[M].New York:Dover Publications,Inc,1956 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%