研究了2197-T851合金的疲劳裂纹萌生与扩展特性.结果表明,2197铝锂合金的疲劳裂纹萌生与应力水平有关,在较低应力下,主要萌生在第二相粒子、第二相粒子/基体界面以及表面缺陷处,而在较高应力水平下,还出现沿滑移带和晶界处萌生.裂纹的扩展优先沿有利滑移面,在晶粒间的扩展以沿{111}面的穿晶扩展为主,也有沿小角度晶界扩展的情况,合金具有很好的平面滑移性.裂纹在晶粒内的扩展并非沿一个滑移系的直线扩展而是频繁发生偏折,却始终沿{111}面,可剪切共格相δ'粒子造成晶内扩展路径曲折.
参考文献
[1] | 杨守杰,陆政,苏彬,戴圣龙,刘伯操,颜鸣皋.铝锂合金研究进展[J].材料工程,2001(05):44-47. |
[2] | 谢长生.人类文明的基石-材料科学技术[M].Wuhan:Huazhong Technology University Press,1999 |
[3] | Balmuth E S;Chellman D J.The 4th International Conference on Aluminum Alloys[M].Georgia:Georgia Institute of Technology,1994:282. |
[4] | 黄兰萍,郑子樵,黄永平.2197铝-锂合金的组织和性能[J].中国有色金属学报,2004(12):2066-2072. |
[5] | Metal Axial Fatigue Testing(金属轴向疲劳实验方法)GB3075-82[S]. |
[6] | Lados D A;Apelian D;de Figueredo A M.The 2nd International Aluminum Casting Technology Symposium[M].Columbus:ASM International,2002:185. |
[7] | Chan KS.;Jones P.;Wang QG. .Fatigue crack growth and fracture paths in sand cast B319 and A356 aluminum alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):18-34. |
[8] | Davidson D L;Tryon R G;Oja M et al.[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2007,38A:2214. |
[9] | Oja M;Ravi Chandran K S;Tryon R G .[J].International Journal of Fatigue,2010,32(03):551. |
[10] | Chan K S;Tian J W;Yang B et al.[J].Metallurgical and Materials Transactions A,2009,40A:2545. |
[11] | Laird C .[J].Materials Science and Engineering,1976,25:187. |
[12] | Suresh S.Fatigue of Materials[M].London:cambridge University Press,1998 |
[13] | Klesnil M;Luksa P.Fatigue of Metallic Materials[M].New York:Elsevier,1980:57. |
[14] | Zhai T;Wilkinson A J;Martin J W .[J].Acta Materialia,2000,48:4917. |
[15] | Lewandowska M;Mizera J;Wyrzykowski J W .[J].Materials Characterization,2000,45:195. |
[16] | Surech S.Fatigue of Materials[M].London:cambridge University Press,1993:200. |
[17] | 钟群鹏;赵子华.断口学[M].北京:高等教育出版社,2006:264. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%