欢迎登录材料期刊网

材料期刊网

高级检索

通过力学性能测试和显微组织观察研究了2197合金组织和性能之间的关系.结果表明:2197合金具有中等强度、各向异性小、热稳定性好等特点;该合金在T8状态下能获得最佳的强度和塑性配合,在T6时效状态以析出少量δ'、θ'和T1相联合强化为主;在2197合金的相组成中T1相析出数量不占主导地位,Al6Mn弥散质点的析出有利于减少各向异性;2197合金中Li含量较低,使其呈现较好的热稳定性.

参考文献

[1] 田荣璋;王祝堂.铝合金及其加工手册[M].长沙:中南大学出版社,2000
[2] Zhu AW.;Starke EA.;Csontos A. .Computer experiment on superposition of strengthening effects of different particles[J].Acta materialia,1999(6):1713-1721.
[3] Baumann S F;Williams D B .A new method for the determination of the precipitate-matrix interfacial energy[J].Scripta Metallurgica et Materialia,1984,18(06):611-616.
[4] Ahmad M;Ericsson T .Coarsening of δ′, T1, θ′ phases in an Al-Li-Cu-Mg alloy[J].Scripta Metallurgica et Materialia,1985,19(04):457-462.
[5] Noble B;Thompson G E .T1 (Al2CuLi) precipitation in aluminum-copper-lithium alloys[J].Metal Science Journal,1972,6:167-172.
[6] Cassada W A;Shiflet G J;Starke E A Jr .Mechanism of Al2CuLi (T1) nucleation and growth[J].Metallurgical and Materials Transactions,1991,22(02):288-297.
[7] Tosten M H;Vasudevan A K;Howel P R .The aging characteristics of an Al-2Pct Li-3Pct Cu-0. 12Pct Zr alloy at 190℃[J].Metallurgical and Materials Transactions,1988,19(01):51-61.
[8] Huang J C;Ardell A J .Addition rules and the contribution of δ′ precipitates to strengthening of aged Al-Licu alloy[J].Acta Materialia,1988,36(11):2995-3006.
[9] Nie J F;Muddle B C;Polmear I J .The effect of precipitate shape and orientation on dispersion strengthening in high strength aluminum alloys[J].Materials Science Forum,1996,217-222:1257-1262.
[10] Kim J D;Park J K .[J].Metallurgical and Materials Transactions,1993,24(12):2613-2621.
[11] Mizera J;Driver J H;Jezierska E et al.Studies of the relationship between the microstructure and anisotropy of the plastic properties of industrial aluminum-lithium alloys[J].Materials Science and Engineering A,1996,A212:94-101.
[12] Vasudevan A K;Fricke W G Jr;Malcolm R C et al.On through thickness crystallographic texture gradient in Al-Li-Cu-Zr alloy[J].Metallurgical and Materials Transactions,1988,19:731-734.
[13] 魏齐龙,陈铮,王永欣.1420铝锂合金的各向异性[J].中国有色金属学报,2002(03):573-577.
[14] Csontos A.A.;Starke E.A. .The Effect of Processing and Microstructure Development on the Slip and Fracture Behavior of the 2.1 Wt Pct Li AF/C-489 and 1.8 Wt Pct Li AFIC-458 Al-Li-Cu-X Alloys[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2000(8):1965-1976.
[15] Maurice C;Driver J H .High temperature plane strain compression of cube oriented aluminum crystals[J].Acta Materialia,1993,41(06):1653-1664.
[16] Jata KV.;Vasudevan AK.;Panchanadeeswaran S. .Evolution of texture, microstructure and mechanical property anisotropy in an Al-Li-Cu alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1998(1):37-46.
[17] Vasudevan A K;Przystupa M A;Fricke W G Jr .Effect of composition on crystallographic texture in hot-rolled Al-Li-Cu alloys[J].Materials Science and Engineering A,1996,A208:172-180.
[18] Kim N J;Lee E W .[J].ACTA METALLURGICA ET MATERIALIA,1993,41(03):941-948.
[19] Lee E W;Kalu P N;Brandao L et al.The effect of off-axis termo-mechanical processing on the mechanical behaviour of textured 2095 Al-Li alloy[J].Materials Science and Engineering A,1999,A265:100-109.
[20] Balmuth E S.The status of Al-Li alloys[A].USA:The Georgia Institute of Technology School of Mater Sci and Eng,1994:82-89.
[21] Koch U;Fannenmuller T P;Davydov V et al.Advanced weldable high-strength Al-Cu-Li alloy for aerospace applications[J].Materials Science Forum,1997,242:243-248.
[22] Lynch S P .Fracture of 8090 Al-Li plate( Ⅰ )-short transverse fracture toughness[J].Materials Science and Engineering A,1991,A136:25-43.
[23] Pitcher P D;Stewart R J;Gupta S .[J].Scripta Metallurgica et Materialia,1992,26:511-516.
[24] Ohsaki S;Iion M;Utsue M et al.Effect of doubleageing on the fracture toughness of 2090 and 2091aluminum alloys[J].Inst Light Met,1995,45(11):660-665.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%