欢迎登录材料期刊网

材料期刊网

高级检索

采用碱性焦磷酸盐体系在45钢基体上电刷镀制备了铜锡合金镀层。考察了刷镀电压、刷镀液中氯化亚锡质量浓度、pH、刷镀时间等工艺参数对镀层的化学成分、物相结构、显微硬度和附着力的影响。结果表明:刷镀液pH为8.0~10.0时,随电压增大,镀层锡含量呈下降趋势。当氯化亚锡为9.0 g/L,pH为8.0~9.5时,刷镀液稳定,镀层主要由Cu20Sn6和Cu6Sn5构成,锡含量处于高锡水平(质量分数44.10%~57.40%),显微硬度较高。当pH为9.5~10.0时,刷镀液不稳定,镀层主要由Cu20Sn6和α-Cu构成,锡含量处于中锡水平(质量分数35.60%~44.50%),显微硬度较低。随刷镀时间延长,镀层的孔隙率显著下降,刷镀18 min所得镀层非常致密。刷镀电压为4 V时所得厚度为18.00~21.00μm的镀层的附着力在18~23 N之间。

Copper–tin alloy deposits were prepared using electro-brush plating with alkaline pyrophosphate bath on 45 steel substrate. The effects of process parameters such as plating voltage, mass concentration of stannous chloride in bath, pH, and brush plating time on composition, phase structure, microhardness, and adhesion strength of the deposits were studied. The results showed that the tin content of the deposit decline with the increasing of plating voltage at bath pH 8.0-10.0. The bath containing stannous chloride 9.0 g/L is stable at pH 8.0-9.5 and produces the deposits mainly composed of Cu20Sn6 and Cu6Sn5 with a high tin content (44.10wt% to 57.40wt%) and high microhardness, while is unstable at pH 9.5-10.0 and produces the deposits mainly composed of Cu20Sn6 andα-Cu with a medium tin content (35.60wt% to 44.50wt%) and relatively low microhardness. The porosity of the deposit is decreased significantly with the extending of brush plating time. The deposit obtained by brush plating for 18 min is very compact. The adhesion strength of the deposits having a thickness of 18.00-21.00μm obtained at a brush voltage of 4 V is 18-23 N.

参考文献

[1] Yavuz Surme;A. Ali Gurten;Emel Bayol .Systematic corrosion investigation of various Cu-Sn alloys electrodeposited on mild steel in acidic solution: Dependence of alloy composition[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2009(1/2):98-103.
[2] Igor Volov;Xiaoxuan Sun;Greeshma Gadikota;Ping Shi;Alan C. West.Electrodeposition of copper-tin film alloys for interconnect applications[J].Electrochimica Acta,2013:792-797.
[3] Deenesh Padhi;Srinivas Gandikota;Hoa B. Nguyen;Chris McGuirk;Sivakami Ramanathan;Joseph Yahalom;Girish Dixit .Electrodeposition of copper-tin alloy thin films for microelectronic applications[J].Electrochimica Acta,2003(8):935-943.
[4] 刘胜 .锂离子电池CuSn合金负极材料的研究[D].湖南大学,2009.
[5] 任建国,蒲薇华,何向明,万春荣,姜长印.电沉积法制备锂离子电池锡铜合金负极及表面修饰[J].稀有金属材料与工程,2006(z1):359-364.
[6] 冯冰,曾振欧,范小玲,雷晓云,梁韵锐.无氰滚镀铜锡合金持续增厚工艺[J].电镀与涂饰,2013(01):5-9.
[7] Subramanian B;Mohan S;Jayakrishnan S .Structural, microstructural and corrosion properties of brush plated copper-tin alloy coatings[J].Surface & Coatings Technology,2006(3/4):1145-1151.
[8] 张琪,曾振欧,徐金来,赵国鹏.低锡铜-锡合金无氰电镀工艺[J].电镀与涂饰,2011(09):1-4.
[9] 黄新,余祖孝.焦磷酸盐电镀Cu-Sn合金添加剂研究[J].腐蚀与防护,2011(12):1009-1012.
[10] 余向飞 .无氰铜锌合金电镀工艺研究[D].大连理工大学,2008.
[11] 方景礼.电镀配合物──理论与应用[M].北京:化学工业出版社,2008:38-39,348-349.
[12] 洛温海姆;北京航空一O三教研室.现代电镀[M].北京:机械工业出版社,1982:588-589.
[13] T.N. Vorobyova;V.P. Bobrovskaya;V.V. Sviridov .The Composition and Structure of Electrodeposited Copper-Tin Alloy Films[J].Metal Finishing,1997(11):14,16-18,20-0.
[14] 梁志杰;臧永华.刷镀技术实用指南[M].北京:中国建筑工业出版社,1988
[15] 路俊攀;李湘海.加工铜及铜合金金相图谱[M].长沙:中南大学出版社,2010:152-153.
[16] SCHLESINGER M;PAUNOVIC M;范宏义.现代电镀[M].北京:化学工业出版社,2006:29-30.
[17] Caterina Zanella;Sujie Xing;Flavio Deflorian.Effect of electrodeposition parameters on chemical and morphological characteristics of Cu-Sn coatings from a methanesulfonic acid electrolyte[J].Surface & Coatings Technology,2013:394-399.
[18] 李炯辉;林德成.金属材料金相图谱[M].北京:机械工业出版社,2006:1490-1491.
[19] BARBANO E P;DE OLIVEIRA G M;DE CARVALHO M F et al.Copper-tin electrodeposition from an acid solution containing EDTA added[J].Surface and Coatings Technology,2014,240:14-22.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%