高分子材料科学与工程, 2002, 18(5): 88-91.
苎麻纬编针织复合材料的研制
王俊勃 1, , 万振江 2, , 赵川 3, , 李英民 {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"用SEM、TEM观测了微细铜粉在250-400℃空气氧化过程中的形貌和结构变化,并用热重分析仪(TGA)测试了试样的氧化增重.通过对氧化产物形貌变化的分析提出了微细铜粉中温空气的氧化历程:氧原子吸附→疏松氧化膜形成→铜离子向外迁移→氧化膜增厚.在此基础上建立了微细铜粉空气氧化增重的理论表达式,用铜粉在250-400℃间的氧化增重实验结果回归拟合了理论公式的参数,拟合结果与实验结果很好吻合.","authors":[{"authorName":"郭艳辉","id":"4b3e39d1-2a9f-47c7-b918-a0f052b1c593","originalAuthorName":"郭艳辉"},{"authorName":"张楠","id":"27034edd-391e-4927-ac27-8b1ccf1b3ec5","originalAuthorName":"张楠"},{"authorName":"陈纪忠","id":"1f05fff3-6e4d-437f-ae9f-e901c4cf4124","originalAuthorName":"陈纪忠"}],"doi":"10.3321/j.issn:0412-1961.2008.07.010","fpage":"821","id":"7138106a-9e90-4177-96d7-e80b2a82892f","issue":"7","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"9df23918-31a3-4e78-a1d7-7958e319a7cb","keyword":"微细铜粉","originalKeyword":"微细铜粉"},{"id":"c7c3b491-c3e4-47b6-b069-9491dc630eda","keyword":"空气氧化","originalKeyword":"空气氧化"},{"id":"037cfaec-f411-46db-8993-eda8f5a391fa","keyword":"增重表达式","originalKeyword":"增重表达式"},{"id":"4cc8136b-62c9-4b4c-b062-1d77063bd5af","keyword":"模拟","originalKeyword":"模拟"}],"language":"zh","publisherId":"jsxb200807010","title":"微细铜粉在250-400℃空气中的氧化行为","volume":"44","year":"2008"},{"abstractinfo":"利用水银法与热提取法试验测定了590 MPa级高强度焊条在不同温度下的扩散氢逸出速率,建立了与温度相关的扩散氢逸出速率表达式,并验证了该表达式的有效性.结果表明,该表达式可以较为准确地计算出焊缝金属冷却过程中的瞬态扩散氢浓度.","authors":[{"authorName":"杨欢","id":"2b72b979-3a0d-4e58-bac5-2ce952db79b1","originalAuthorName":"杨欢"},{"authorName":"王涛","id":"2b46f763-69de-444b-ba59-5765fd834d77","originalAuthorName":"王涛"},{"authorName":"薛钢","id":"33ff7e7d-9636-4158-b4de-fb57c1df3df2","originalAuthorName":"薛钢"},{"authorName":"刘健","id":"f6139d4c-02f7-426f-8dd3-e0225284a817","originalAuthorName":"刘健"}],"doi":"","fpage":"4","id":"596127b4-6972-48f1-8472-4441d987c5b4","issue":"2","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"2800de6e-e4ab-42ca-8f5f-2c2ac64aeedc","keyword":"高强度焊条","originalKeyword":"高强度焊条"},{"id":"b592e581-25e9-4a31-a889-8286d7b6cde8","keyword":"扩散氢","originalKeyword":"扩散氢"},{"id":"8842065a-60c5-406b-89ea-9d7a01761d2c","keyword":"逸出速率表达式","originalKeyword":"逸出速率表达式"}],"language":"zh","publisherId":"clkfyyy201502002","title":"590 MPa级高强度焊条扩散氢逸出速率表达式","volume":"30","year":"2015"},{"abstractinfo":"在组分的电泳因素基本不影响其色谱行为的前提下,推导出组分保留因子表达式k*CEC=k'-(μep)/(μeo+μep)(Ⅰ)及k**CEC=k'-(μep-μ0ep)/(μeo+μep)(Ⅱ),两者可以互相补充.同时对毛细管电色谱的相关文献中组分保留因子的两种表达式kCEC=k'+k' (μep)/(μeo)+(μep)/(μeo)(Ⅲ)及kCEC=(k'-μep/μeo)/(1+μep/μeo)(Ⅳ)进行了讨论,指出了表达式(Ⅲ)推导中引用组分电泳迁移距离的错误.但表达式(Ⅰ)和(Ⅳ)在某些条件下也不能有效反映组分的电泳淌度μep及k'对kCEC的影响.式(Ⅱ)能够弥补表达式(Ⅰ)和(Ⅳ)的不足,尤其当μeo=0时.式(Ⅰ)和式(Ⅱ)能够使组分保留因子始终反映出组分的色谱行为及电泳行为的综合作用.","authors":[{"authorName":"郭怀忠","id":"bd3c3b11-347c-4aeb-9914-843ef67a13c0","originalAuthorName":"郭怀忠"},{"authorName":"毕开顺","id":"80183e9d-7f11-4bd6-a9f9-bdeea98e39dd","originalAuthorName":"毕开顺"},{"authorName":"孙毓庆","id":"2f002aba-6f4b-49ab-8d86-d97e5e90d702","originalAuthorName":"孙毓庆"}],"doi":"10.3321/j.issn:1000-8713.2004.05.001","fpage":"465","id":"64d131f7-3d33-4a9f-bef7-719ffcc7b9b1","issue":"5","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"29d86e9f-8ff6-4e31-ab97-ea48af5d6107","keyword":"毛细管电色谱","originalKeyword":"毛细管电色谱"},{"id":"524350b2-59ea-4035-9f30-0e331eff7be4","keyword":"保留因子","originalKeyword":"保留因子"},{"id":"e1d09e63-cf4d-43c1-be33-96e14ab695d0","keyword":"表达式","originalKeyword":"表达式"}],"language":"zh","publisherId":"sp200405001","title":"毛细管电色谱中组分保留因子表达式的讨论","volume":"22","year":"2004"},{"abstractinfo":"协调系数是反映气体与壁面动量和能量交换的重要参数,可通过分子动力学方法进行统计,其二维模拟由于计算量较三维大大减小而逐渐得到应用.法向动量协调系数表达式中的p_(nw)和能量协调系数表达式中的E_w分别表示气体分子在壁面漫反射后的平均法向动量和平均能量,利用气体动理论推导发现,二维的p_(nw)与三维相同,而E_w则由于降维小于三维的结果,导致能量协调系数的表达式在二维计算中有别于三维.依据协调系数的表达式,使用分子动力学方法模拟三维和二维系统中的导热问题,结果表明,二维能量协调系数与三维相比较小,而法向动量协调系数差别不大.","authors":[{"authorName":"孙俊","id":"54a82574-7f89-4dec-a48e-6861d85fc241","originalAuthorName":"孙俊"},{"authorName":"李志信","id":"dadbddd3-4c28-4be1-a0b8-e3db84945bf9","originalAuthorName":"李志信"}],"doi":"","fpage":"1732","id":"f8b68cbe-d664-44ae-a506-aa9ea89f655e","issue":"10","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"7671238a-1d41-4963-802a-ba661e6a07af","keyword":"协调系数","originalKeyword":"协调系数"},{"id":"54bb8472-2202-4d42-a927-94706dbd3885","keyword":"速率分布函数","originalKeyword":"速率分布函数"},{"id":"4d420f4d-a16a-4a28-bbd3-8099348b98df","keyword":"分子动力学","originalKeyword":"分子动力学"}],"language":"zh","publisherId":"gcrwlxb200910032","title":"二维分子动力学计算中协调系数的表达式","volume":"30","year":"2009"},{"abstractinfo":"根据受扭矩圆柱体中的应力分析和Griffith脆断强度理论,提出了脆性材料的抗扭切口强度表达式.根据此式和Al2O3陶瓷管抗扭强度的正态分布参数,可以求得带存活率的抗扭切口强度表达式,并进行了验证.还提出了处理来自不同试验室的Al2O3陶瓷管抗扭强度和抗扭切口强度试验数据的思路和方法.结果表明:此试验数据处理的思路和方法是可行的.","authors":[{"authorName":"郑修麟","id":"52dbcfba-740f-4399-a7af-0f811bd7e070","originalAuthorName":"郑修麟"},{"authorName":"王泓","id":"93d0c70d-c9ef-45f1-8af8-0fdc37a10120","originalAuthorName":"王泓"},{"authorName":"鄢君辉","id":"138e14ac-0191-41b8-b711-8a6dfe12cb06","originalAuthorName":"鄢君辉"},{"authorName":"赵康","id":"0185664e-f91a-412d-9b91-836b49eda5b6","originalAuthorName":"赵康"}],"doi":"10.3969/j.issn.1000-3738.2004.04.002","fpage":"4","id":"413fdacd-c2cc-4f14-aef9-6842dd76aa10","issue":"4","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"00718fe8-7410-4bd0-aa82-db42104f90b2","keyword":"脆性断裂","originalKeyword":"脆性断裂"},{"id":"7b39b616-c818-436e-a38a-6f280a33b20d","keyword":"Al2O3陶瓷","originalKeyword":"Al2O3陶瓷"},{"id":"bb25f629-19fa-4530-b86a-b85811f7102f","keyword":"抗扭切口强度","originalKeyword":"抗扭切口强度"},{"id":"25931a22-4b16-4078-a504-f6d0b51db152","keyword":"存活率","originalKeyword":"存活率"}],"language":"zh","publisherId":"jxgccl200404002","title":"陶瓷材料的抗扭切口强度与表达式","volume":"28","year":"2004"},{"abstractinfo":"本文对Al2O3陶瓷的强度实验结果进行了进一步分析,分析结果表明:陶瓷的弯曲切口强度和弯曲断裂强度的实验结果同时服从正态分布、对数正态分布和两参数Weibull分布.进而根据脆性材料切口强度表达式和概率论一般原理,求得了切口强度和弯曲强度统计特征参量间的相互关系表达式,并进行了验证.","authors":[{"authorName":"鄢君辉","id":"dcc682bd-d9ce-4a9f-9245-a3660b33de30","originalAuthorName":"鄢君辉"},{"authorName":"郑修麟","id":"3b9306a6-eb5c-4ea7-b418-af63dccc14c4","originalAuthorName":"郑修麟"},{"authorName":"赵康","id":"eee87ac0-6ed9-40c9-98ce-024950c8a845","originalAuthorName":"赵康"},{"authorName":"王锋会","id":"04a00da7-bffd-43f1-bf47-68becbd32ee3","originalAuthorName":"王锋会"}],"categoryName":"|","doi":"","fpage":"449","id":"bac7c8c1-2fef-4dd7-b10c-f740523b9cbc","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"0db5bc0d-f093-47cb-be2b-120b1a4285a8","keyword":"陶瓷","originalKeyword":"陶瓷"},{"id":"489a0125-083f-4e6f-9ff0-3ca7346a5193","keyword":"null","originalKeyword":"null"},{"id":"9660067c-4317-4f37-9791-326d78c6c1a0","keyword":"null","originalKeyword":"null"},{"id":"e6db0f51-2eb7-40ef-a69b-2a9efc891597","keyword":"null","originalKeyword":"null"},{"id":"5eab0824-4895-46e0-b264-c22e1f951dc3","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1000-324X_1998_4_20","title":"陶瓷切口强度的概率分布(Ⅰ)基本表达式","volume":"13","year":"1998"},{"abstractinfo":"通过试验测得T851处理的2124铝合金板TL取向与LT取向不同应力比时的裂纹扩展门槛值及裂纹扩展速率;将应力比影响下的有效应力强度因子△Keff、有效裂纹扩展门槛值△Keffth及裂纹在循环应力作用下的临界应力强度因子K'c引入全范围裂纹扩展速率表达式中,并用修正后的公式对不同应力作用下2124铝合金TL取向与LT取向的疲劳裂纹扩展速率进行了预测.结果表明:预测结果与试验结果基本吻合,说明修正后全范围裂纹扩展速率表达式可以用来描述2124铝合金裂纹扩展速率.","authors":[{"authorName":"严芳芳","id":"5e94519a-d7bf-45c4-bd7c-442f2999d2a6","originalAuthorName":"严芳芳"},{"authorName":"连黎明","id":"06389d71-64b9-40c5-8d73-bae40b6788ff","originalAuthorName":"连黎明"}],"doi":"","fpage":"88","id":"c09edf04-81e6-481f-9c99-51aae39b16f8","issue":"10","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"4860bcf0-8f05-4970-be3e-fe9dd3918094","keyword":"裂纹扩展速率","originalKeyword":"裂纹扩展速率"},{"id":"fd63bc94-4cc2-45f2-904b-a17b10e04c89","keyword":"应力比","originalKeyword":"应力比"},{"id":"12c562b7-3558-444c-8b82-8d2051df8970","keyword":"应力强度因子","originalKeyword":"应力强度因子"},{"id":"98183569-3991-41df-b3a2-954f5074e25a","keyword":"门槛值","originalKeyword":"门槛值"}],"language":"zh","publisherId":"jxgccl201410020","title":"应力比影响下的铝合金全范围疲劳裂纹扩展速率表达式","volume":"38","year":"2014"},{"abstractinfo":"把系统和环境构成的多相复合系统作为(火用)的物质属体,进一步明确了(火用)的定义,直接从理论上给出热力学(火用)的基本表达式,该式适用于均相或多相开口系统、封口系统、稳流系统等各类物理化学(火用)的计算.","authors":[{"authorName":"朱元海","id":"ee8fa022-f2b1-4d97-95af-c099571ac9ff","originalAuthorName":"朱元海"},{"authorName":"王宝辉","id":"2a721c48-0c23-4831-b395-d0310de0ae46","originalAuthorName":"王宝辉"},{"authorName":"项新耀","id":"d3783dcf-8fc7-4d76-88d4-eb067f20c20b","originalAuthorName":"项新耀"}],"doi":"","fpage":"906","id":"3643c4d4-721a-48fb-b3e3-9db92609c46f","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"46006aca-f593-404c-9865-fb9efa666a1d","keyword":"热力学","originalKeyword":"热力学"},{"id":"f6f8c59c-7672-4e08-a9d4-5941cf254a71","keyword":"(火用)","originalKeyword":"(火用)"},{"id":"3c87ae08-b631-4e82-88f5-6549dfe66809","keyword":"基本表达式","originalKeyword":"基本表达式"},{"id":"22c23029-edf0-47a1-bef7-bf77f7665273","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"gcrwlxb200306002","title":"热力学(火用)的基本表达式与应用","volume":"24","year":"2003"},{"abstractinfo":"基于断裂力学理论,针对Q500钢焊接接头评价,以更简便的计算Q500钢焊接接头KC值和防断分析为目标,考虑冶金质量和板厚影响的系列温度夏比冲击试验结果,结合深缺口宽板拉伸试验结果,得出了Q500钢焊接接头断裂韧性KC的表达式.","authors":[{"authorName":"苏洋","id":"a529a32c-918c-424f-aaa5-8ac729c73aaf","originalAuthorName":"苏洋"},{"authorName":"易伦雄","id":"fd058679-f0ec-4dae-adca-f3e5f27355af","originalAuthorName":"易伦雄"},{"authorName":"马建坡","id":"b9d09a79-a1e9-4664-bce9-a2fd2a735c9b","originalAuthorName":"马建坡"},{"authorName":"宫旭辉","id":"6bf61ef1-2297-46a0-b489-e4afc4e3bf0f","originalAuthorName":"宫旭辉"}],"doi":"","fpage":"1","id":"47c09be8-2303-48ac-b8c3-14c43d40aa33","issue":"3","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"7cb34e57-199c-433d-955f-42ae2d7725a0","keyword":"Q500桥梁钢","originalKeyword":"Q500桥梁钢"},{"id":"3a860aff-8b87-471c-9d5a-ab38dfde0391","keyword":"断裂韧性","originalKeyword":"断裂韧性"},{"id":"6bdd1c63-9c81-4c55-a1f6-848984e7e7b1","keyword":"宽板拉伸试验","originalKeyword":"宽板拉伸试验"},{"id":"b43fd7c6-2f14-483b-a768-4465f70f24e7","keyword":"夏比冲击试验","originalKeyword":"夏比冲击试验"}],"language":"zh","publisherId":"clkfyyy201503001","title":"Q500钢焊接接头断裂韧性KC的表达式","volume":"30","year":"2015"},{"abstractinfo":"考虑到马氏体加铁素体双相钢的组织分布及变形特征与短纤维复合材料的相似性,以剪切滞后分析法为基础,提出一种新的双相钢强度表达式: σ_(bDP)=(β/23~(1/2)+0.65)1/Kσ_(bM)V_M+σ_(bF)(1-V_M)在成分及组织各不相同的各种双相钢上所得的实验数据均与按上式计算的结果符合较好。文中讨论了铁素体向马氏体的载荷传递及马氏体强度利用率。","authors":[{"authorName":"沈显璞","id":"04f1f5e9-8cec-4635-850d-25a9a9239009","originalAuthorName":"沈显璞"},{"authorName":"雷廷权","id":"a86a0eac-0196-49b2-be1f-ee0f96d50f20","originalAuthorName":"雷廷权"}],"categoryName":"|","doi":"","fpage":"271","id":"3c1a13e8-3486-4250-a6b9-723033bf5809","issue":"4","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[],"language":"zh","publisherId":"0412-1961_1984_4_3","title":"一种新的双相钢强度表达式","volume":"20","year":"1984"}],"totalpage":179,"totalrecord":1789}