欢迎登录材料期刊网

材料期刊网

高级检索

提出了一种求解二维非定常不可压Navier-Stokes/Boussinesq方程的高精度全隐式紧致差分格式,为了提高隐格式的求解效率,在每一个时间步上,采用多重网格的全近似格式(FAS)加速其迭代收敛过程,其主要特点是既适于线性问题的求解又适用于非线性问题的求解.作为方法精确性和可靠性的验证,对方腔内部的自然对流问题进行了数值模拟.取Pr=0.71,在最大网格等分数为128×128网格上,Rα数最大算到107,所得结果与已有文献结果吻合的很好.

参考文献

[1] Zhang J .Accelerated Multigrid High Accuracy Solution of the Convection-Diffusion Equation with High Reynolds Number[J].Numerical Methods for Partial Differential Equations,1997,13:77-92.
[2] BRANDT A;Yavenh I .Inadequency of First-Order Upwind Difference Schemes for Some Recirculating Flow[J].Journal of Computational Physics,1991,93:128-143.
[3] DENNIS S C R;Hudson J D .Compact h4 Finite-Difference Approximations to Operators of Navier-Stokes Type[J].Journal of Computational Physics,1989,85:390-416.
[4] Chen G Q;Gao Z;Yang Z F .A Perturbational h4 Exponential Finite Difference Scheme for Convection Diffusion Equation[J].Journal of Computational Physics,1993,104:129-139.
[5] Choo J Y;Schult D H .A Stable High Order Method for the Heated Cavity Problem.Int[J].International Journal for Numerical Methods in Fluids,1992,15:1313-1332.
[6] Tian Z F;Ge Y B .A Fourth-Order Compact Finite Difference Scheme for the Steady Streamfunction-Vorticity Formulation of the Navier-Stokes/Boussinesq Equations.Int[J].International Journal for Numerical Methods in Fluids,2003,41:495-518.
[7] Collatz L.The Numerical Treatment of Differential Equations[M].Berlin:Springer-Verlog,1960
[8] BRANDT A .Multi-Level Adaptive Solution to BoundaryValue Problems[J].Mathematics of Computation,1977,31:333-390.
[9] Wesseling P W.An Introduction to Multigrid Methods[M].Chichester:Wiley and Sons,1992
[10] THOMPSON M C;Ferziger J H .An Adaptive Multigrid Technique for the Incompressible Navier-Stokes Equations[J].Journal of Computational Physics,1989,82:94-121.
[11] Altas I;Burrage K .A High Accuracy Defect-Correction Multigrid Method for the Steady Incompressible NavierStokes Equations[J].Journal of Computational Physics,1994,114:227-233.
[12] Liao S J;Mashayek F .A Multigrid Approach for Steady State Laminar Viscous Flows. Int[J].International Journal for Numerical Methods in Fluids,2001,37:107-123.
[13] Ghia U;Ghia K N;Shin C .High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method[J].Journal of Computational Physics,1982,48:387-411.
[14] Nobile E .Simulation of the Time-Dependent Flow in Cavities with the Additive-Correction Multigrid MethodPart Ⅱ: Applications[J].Numerical Heat Transfer,1996,30:351-370.
[15] 葛永斌,田振夫,吴文权.二维抛物型方程的高精度多重网格解法[J].应用数学,2003(02):13-18.
[16] DE VAHL DAVIS G .Natural Convection in a Square Cavity:a Bench Mark Numerical Solution. Int[J].International Journal for Numerical Methods in Fluids,1983,3:249-264.
[17] Le Quéré P .Accurate Solution to the Square Thermally Driven Cavity at High Rayleigh Number[J].Computers and Fluids,1991,20:29-41.
[18] Syrjala S. .HIGHER ORDER PENALTY GALERKIN FINITE ELEMENT APPROACH TO LAMINAR NATURAL CONVECTION IN A SQUARE CAVITY[J].Numerical Heat Transfer, Part A. Application: An International Journal of Computation and Methodology,1996(2):197-210.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%