欢迎登录材料期刊网

材料期刊网

高级检索

采用由板材织构信息进行加权的CMTP屈服函数并考虑了摩擦和压边力的变化对3104铝合金薄板的深冲制耳进行了有限元模拟;并与采用Barlat(1991)屈服函数的预测值及实测值进行了比较;分析了深冲过程中圆片的厚度变化规律;讨论了进一步提高预测精度需考虑的因素.结果表明:采用CMTP屈服函数模拟的制耳轮廓与实测值比较吻合,随摩擦和压边力的增加,制耳轮廓高度也增加;且比采用Barlat(1991)屈服函数模拟的精度要高.模拟深冲过程中圆片厚度的变化规律与实际情况一致.

参考文献

[1] Hill R .[J].Proceedings of the Royal Society of London,1948,193A:281-284.
[2] Barlat F;Lege D J;Brem J C .[J].International Journal of Plasticity,1991,7:693-695.
[3] Barlat F;Maeda Y;Chung K et al.[J].Journal of the Mechanics and Physics of Solids,1997,45:1727-1730.
[4] 汪凌云,杨文敏,黄光杰,刘雪峰.1420铝锂合金特深模锻件反挤成形过程的热力耦合有限元分析[J].稀有金属材料与工程,2003(05):326-329.
[5] Grujicic M.;Batchu S. .Crystal plasticity analysis of earing in deep-drawn OFHC copper cups[J].Journal of Materials Science,2002(4):753-764.
[6] Zhao Z;Mao W;Roters F et al.[J].Acta Materialia,2004,52:1003-1006.
[7] Saimoto S;Houtte Von P;Reesor D .[J].Textures and Microstructures,1991,14/18:1233-1236.
[8] Inal K.;Neale KW.;Wu PD. .Simulation of earing in textured aluminum sheets[J].International Journal of Plasticity,2000(6):635-648.
[9] Inagaki H .[J].Zeitschrift fur Metallkunde,1993,84(07):494-497.
[10] Montheillet F;Gilormini P;Jonas J J .[J].Acta Materialia,1985,33:705-708.
[11] HIBBITT.ABAQUS/Standard User's Manual[M].New York: Karlsson & Sorensen, Inc Press,2002
[12] Chung K;Shah K .[J].International Journal of Plasticity,1992,8:453-456.
[13] Saiyi L;Hoferlin E et al.[J].International Journal of Plasticity,2003,19:647-651.
[14] Bishop J W F;Hill R .[J].Philosophical Magazine,1951,42:414-417.
[15] Bishop J W F;Hill R .[J].Philosophical Magazine,1951,42:1298.
[16] Belytschko Ted;Wing Kam Liu;Moran Brian;庄茁.Nonlinear Finite Elements for Continua and Structures[M].北京:清华大学出版社,2002
[17] 李赛毅 .织构多晶板塑性各向异性及制耳行为研究[D].中南工业大学,1997.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%