欢迎登录材料期刊网

材料期刊网

高级检索

提出并研究盐酸浸出?铁粉置换?硫化沉淀?喷雾热解综合利用窑渣铁精矿的新工艺。结果表明:当盐酸浓度为6 mol/L,浸出温度为60℃时,Ag、Pb、Cu、Fe和Zn的浸出率分别达到99.95%、99.34%、95.07%、89.44%和57.92%。所得盐酸浸出液中加入理论量1.25倍的铁粉,Cu和Ag的脱除率均可达到98%以上。当硫化亚铁用量为理论量的3倍时,铁粉置换后液中Pb、Zn的脱除率可达96%以上,净化后液中杂质总量低于500 mg/L。以硫化沉淀后的液体为原料进行喷雾热解,在温度高于700℃时,可制得平均粒度(D 50)为12μm、纯度>99%的类球形Fe2O3粉末。利用这一工艺,不仅可高效回收窑渣铁精矿中的有价金属,还可将铁资源转化为具有较高附加值的氧化铁产品,从而实现窑渣铁精矿的综合利用。

A novel process, including hydrochloric acid leaching, iron powder replacing, sulphide precipitation and spray pyrolysis, was proposed to treat iron concentrate recovered from zinc kiln slag for comprehensive utilization. Treated by solution of 6 mol/L hydrochloric acid at 60℃, the leaching rates of Ag, Pb, Cu, Fe and Zn reach 99.95%, 99.34%, 95.07%, 89.44% and 57.92%, respectively. More than 98% Cu and Ag are recovered from the leach liquor when stoichiometric ratio of iron powder is 1.25 times of the theoretical value. More than 96% Pb and Zn is removed with three times of theoretical consumption of FeS, and the concentration of impurities of the final solution is less than 500 mg/L. Fe2O3 powder, which is spherical with mean size of 12 um and purity of 99%, is prepared with final solution at above 700℃. By this process, not only the metal values can be recovered effectively, but also the iron resources of zinc kiln slag can be converted into Fe2O3 with high purity, thus, the comprehensive utilization of iron concentrate recovered from zinc kiln slag can be realized.

参考文献

[1] 马娇;焦红光;潘兰英;张传祥;张宏方.干法磁选在锌挥发窑窑渣综合利用中的应用研究[J].河南理工大学学报(自然科学版),2009(6):788-791.
[2] Radu Barnaa;Hae-Ryong Bae;Jacques Mehu.Assessment of chemical sensitivity of Waelz slag[J].Waste Management,20002/3(2/3):115-124.
[3] 王辉.湿法炼锌工业挥发窑窑渣资源化综合循环利用[J].中国有色冶金,2007(06):46-50.
[4] 李静;牛皓;彭金辉;张世敏;张利波;魏昶;范兴祥;黄孟阳.锌窑渣综合回收利用研究现状及展望[J].矿产综合利用,2008(6):44-48.
[5] 卢安贤;黎文献;谢估卿;卢仁伟;曾军;赵金才;舒毓章;谢汉生;傅作健.锌挥发窑渣在玻璃工业中的应用[J].中国有色金属学报,1994(03):48-51.
[6] 李昌福.凡口窑渣冶炼工艺试验研究[J].矿冶,2002(03):56-59,62.
[7] 刘志宏;文剑;李玉虎;李启厚;艾侃.熔融氯化挥发工艺处理凡口窑渣综合回收有价金属的研究[J].有色金属(冶炼部分),2005(3):14-15,19.
[8] M. K. Jha;V. Kumar;R. J. Singh.Review of hydrometallurgical recovery of zinc from industrial wastes[J].Resources, Conservation and Recycling,20011(1):1-22.
[9] Quijorna, N.;Pedro, M. de;Romero, M.;Andres, A..Characterisation of the sintering behaviour of Waelz slag from electric arc furnace (EAF) dust recycling for use in the clay ceramics industry.[J].Journal of Environmental Management,2014:278-286.
[10] M. Deniz Turan;H. Soner Altundogan;Fikret Tumen.Recovery of zinc and lead from zinc plant residue[J].Hydrometallurgy,20041/4(1/4):169-176.
[11] PENG Bing;GAO Hui-mei;CHAI Li-yuan;SHU Yu-de.Leaching and recycling of zinc from liquid waste sediments[J].中国有色金属学会会刊(英文版),2008(05):1269-1274.
[12] Masud A. Abdel-latif.Fundamentals of zinc recovery from metallurgical wastes in the Enviroplas process[J].Minerals Engineering,200211(11):945-952.
[13] 何仕超;刘志宏;刘智勇;李玉虎;李启厚.湿法炼锌窑渣铁精矿的浸出热力学分析[J].中国有色金属学报,2013(12):3430-3439.
[14] 刘志宏;刘智勇;李启厚;吴厚平;张多默.喷雾热分解法制备超细银粉及其形貌控制[J].中国有色金属学报,2007(1):149-155.
[15] Dietzel M..Dissolution of silicates and the stability of polysilicic acid[J].Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society,200019(19):3275-3281.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%