通过对热压成形的ZrB_2+SiC、HfB_2+SiC体系以及原位合成的ZrB_2+SiC体系的压痕试验,分析了SiC颗粒增韧防热陶瓷的增韧机制.从力学角度阐述了各体系的增韧机制,从裂纹的扩展方式及耗能角度比较了各体系增韧模式的异同.分析指出,裂纹偏转、裂纹桥联、裂纹分叉钉扎等多种机制的协同作用是SiC颗粒增韧防热陶瓷韧性大幅提高的主要原因.基体与增强相之间的化学匹配关系也是影响增韧效果的原因之一.
Through the indentation test for hot-pressed ZrB_2+SiC, HfB_2+SiC and in situ ZrB_2+SiC, the toughening mechanism of SiC particle reinforced thermal protective ceramics was analyzed mechanically. The difference in different toughening modes was given through crack development and energy dissipation, which shows that the synergistic effects of crack deflection, crack bridging, crack bifurcation and crack pinning are the main reason to increase the toughness of SiC particle reinforced thermal protective ceramics. Further, the chemical matching between matrix and reinforcement also influences the toughening effects.
参考文献
[1] | Upadhya K;Yang J-M;Hoffmann W P .[J].American Ceramic Society Bulletin,1997,76(12):51. |
[2] | Bronson A;Ma Y T;Mutso R .[J].Journal of the Electrochemical Society,1992,139(11):3183. |
[3] | 韩杰才,胡平,张幸红,孟松鹤.超高温材料的研究进展[J].固体火箭技术,2005(04):289-294. |
[4] | 杨飞宇,杜善义,孟松鹤.碳短纤维-ZrB2陶瓷基复合材料的制备与性能研究[J].稀有金属材料与工程,2007(z1):700-703. |
[5] | Fahrenholtz WG;Hilmas GE;Chamberlain AL;Zimmermann JW .Processing and characterization of ZrB2-based ultra-high temperature monolithic and fibrous monolithic ceramics[J].Journal of Materials Science,2004(19):5951-5957. |
[6] | Levine S R;Opila E J et al.[J].Journal of the European Ceramic Society,2002,22(14,15):2757. |
[7] | Davidge R W;Green T J .[J].Journal of Materials Science,1968,3(06):629. |
[8] | 张国军 et al.[J].硅酸盐学报,1994,22(03):259. |
[9] | 赵宏 et al.[J].硅酸盐学报,1996,24(05):491. |
[10] | Swanson P L;Fairbanks C J;Lawn B R et al.[J].Journal of the American Ceramic Society,1987,70(04):279. |
[11] | Sakai M;Yoshimura J;Goto Y J et al.[J].Journal of the American Ceramic Society,1988,71(08):609. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%