欢迎登录材料期刊网

材料期刊网

高级检索

利用熔体快淬法制备了(NdPr)6Fe79B15和(NdPr,Dy)6Fe74.5C03Cu0.5Zr1B15非晶带.通过X射线衍射(XRD)和差热分析(DSC),并借助Kempen模型和Kissinger方程,研究了合金的非晶晶化过程及非等温晶化动力学.结果表明,与(NdPr)6Fe79B15合金相比,(NdPr,Dy)6Fe74.5Co3Cu0.5Zr1B15合金的非晶形成能力明显提高,在9m/s的辊速下获得了厚度为100 μm以上的非晶厚带.2种合金的非晶厚带具有不同的晶化过程及晶化动力学机制.(NdPr)6Fe79B15合金的晶化分4步完成:非晶相(A)→Nd2Fe23B3+A'→α-Fe+Fe3B+Nd2Fe23B3'→α-Fe+Fe3B+Nd2Fe14B→α-Fe+Fe3B+Nd2Fe14B+Nd1Fe4B4;而(NdPr,Dy)6Fe74.5Co3-Cu0.5Zr1B15合金的晶化分两步完成:非晶相(A)→Fe3B+A'→α-Fe+Fe3B+Nd2Fe14B.与(NdPr)6Fe79B15合金由界面控制的多晶型晶化不同,(NdPr,Dy)6Fe74.5C03Cu0.5Zr1B15合金第1步为界面控制的多晶型晶化,第2步则以扩散控制的共晶型晶化为主.由于退火后组织结构的细化和改善,(NdPr,Dy)6Fe74.5Co3Cu0.5Zr1 B15合金带的磁性能明显优于(NdPr)6Fe79B15合金带.

The crystallization behavior and non-isothermal crystallization kenetics of (NdPr)6Fe79B15 and (NdPr,Dy)6Fe74.5Co3Cu0.5Zr1B15 amorphous thick ribbons by rapid quenching have been studied by means of X-ray diffraction (XRD),differential scanning calorimetry (DSC) combined with Kempen model and Kissinger equation.The results show that the amorphous formation ability of (NdPr)6Fe79B15 is enhanced by the additions of Dy,Co,Cu and Zr.(NdPr,Dy)6Fe74.5Co3Cu0.5Zr1B15 amorphous ribbons with the thickness over 100 μm are obtained by slow quenching at 9 m/s.The two alloys show different crystallization behaviors and kinetic mechanisms.The crystallization processes of (NdPr)6Fe79B15 and (NdPr,Dy)6Fe74.5Co3Cu0.5Zr1B15 alloys can be described as:amorphous phase(A)→Nd2Fe23B3+A'→α-Fe+Fe3B+Nd2Fe23B3'→α-Fe+Fe3B+Nd2Fe14B→ α-Fe+Fe3B+Nd2Fe14B+Nd1Fe4B4 and amorphous phase(A)→Fe3B+A'→α-Fe+Fe3B+Nd2Fe14B,respectively.Different from polymorphic crystallization controlled by interface for (NdPr)6Fe79B15 alloy,the crystallization mechanisms of (NdPr,Dy)6Fe74.5Co3Cu0.5Zr1B15 are polymorphic crystallization controlled by interface for the first step and eutectoidic crystallization controlled by diffusion for the second step.The magnetic properties of (NdPr)6Fe79B15 ribbons are sufficiently enhanced by the additions of Dy,Co,Cu and Zr due to the refinement and modification of microstructure.

参考文献

[1] Schrefl T.;Fidler J. .Micromagnetic simulation of magnetizability of nanocomposite Nd-Fe-B magnets[J].Journal of Applied Physics,1998(11 Pt.2):6262-6264.
[2] Ahmad, I.;Davies, H.A.;Kanwal, M. .Magnetic properties of (Nd,Pr)-Fe-B nanocomposite over quenched and annealed ribbons[J].Journal of Magnetism and Magnetic Materials,2012(23):3971-3974.
[3] 刘新才,郭鹏举,潘晶,徐峰,李勇,崔平.辊速及晶化工艺对(Nd,Pr)_(13)Fe_(80)Nb_1B_6快淬薄带组织和矫顽力的影响[J].稀有金属材料与工程,2009(11):2027-2031.
[4] 张文旺,潘晶,刘新才,郭鹏举,刘艳君,李柱柏.Nd9Fe85.5-xCoxB5.5(x=0,1,3,5)合金快淬薄带及其热变形磁体的微观组织与矫顽力[J].稀有金属材料与工程,2011(04):600-604.
[5] 王大鹏,包小倩,张茂才,朱洁.快淬Nd-Fe-B非晶厚带的晶化过程和非等温晶化动力学[J].金属学报,2009(02):237-242.
[6] 庞利佳,陈菊芳,孙光飞,强文江,彭维波,张锦标,黎文安.快淬Fe3B/Nd2Fe14B永磁材料晶化行为及磁性能的研究[J].稀有金属材料与工程,2006(09):1487-1491.
[7] 徐民,易军,全明秀,王沿东,左良.Nb对非晶态Fe-Co-Nd-B合金的晶化动力学的影响[J].金属学报,2009(01):91-96.
[8] Jin ZQ.;Okumura H.;Munoz JS.;Zhang Y.;Wang HL.;Hadjipanayis GC. .Multi-step crystallization evolution in nanocomposite Pr8Fe86B6 alloys[J].Journal of Physics, D. Applied Physics: A Europhysics Journal,2002(22):2893-2896.
[9] 李伟,李兰兰,李晓红,张湘义.Nd2Fe14B/(α-Fe,Fe3B)复合纳米晶的生长动力学研究[J].功能材料,2004(z1):676-677,680.
[10] 泮敏翔,张朋越,葛洪良,吴琼,杨杭福,宫杰.贫稀土Pr4.5Fe77B18.5非晶合金晶化动力学研究[J].稀有金属材料与工程,2012(09):1646-1650.
[11] Kempen ATW.;Sommer F.;Mittemeijer EJ. .Determination and interpretation of isothermal and non-isothermal transformation kinetics; the effective activation energies in terms of nucleation and growth[J].Journal of Materials Science,2002(7):1321-1332.
[12] Biswas K;Ram S;Roth S;Schultz L;Eckert J .Fabrication of bulk amorphous Fe67Co9.5Nd3Dy0.5B20 alloy by hot extrusion of ribbon and study of the magnetic properties[J].Journal of Materials Science,2006(11):3445-3450.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%