欢迎登录材料期刊网

材料期刊网

高级检索

目的:通过激光熔覆技术,在Q235钢表面原位生成WC-B4 C增强镍基熔覆层。方法以WO3, B2 O3,C和Ni60混合粉末为预涂原料,采用激光熔覆技术原位生成WC-B4 C增强镍基熔覆层,对熔覆层的显微组织和物相构成进行分析,研究其摩擦磨损性能。结果采用合适的工艺参数,通过原位生成WC-B4 C形成的增强镍基涂层形貌良好,与基材呈现较好的冶金结合。熔覆层平均硬度1200HV0.3,摩擦磨损失重仅为纯Ni60熔覆层的1/3。结论熔覆层硬度较高,耐磨性很好。大量原位生成的WC-B4 C增强相及其均匀分布是熔覆层硬度和耐磨性提高的原因。

Objective To in-situ synthesize WC-B4 C reinforced Ni-based composite coating on the surface of steel Q235 sub-strate using laser cladding technique. Methods Using WO3 , B2 O3 , C and Ni60 as pre-coating raw materials, in-situ WC-B4 C rein-forced Ni-based composite coating was synthesized by laser cladding technology. The microstructure observation, component and phases analysis of the coatings were performed to analyze the friction and wear resistance performance. Results The results indica-ted that a good finish WC-B4 C particulate reinforced composite coating could be achieved by proper laser cladding processes. The coatings epitaxial growing from the substrate with excellent bonding between the coating and substrate was assured by the strong metallurgical interface. The in situ synthesized WC-B4 C particulate reinforced Ni-based composite coating had very high hardness of 1200HV0. 3, and excellent wear resistance which was only 1/3 that of pure Ni60 coatings. Conclusion The coating layer had improved hardness and wear resistance, which was due to the in-situ synthesis of WC-B4 C and its homogenous distribution in the cladding layer.

参考文献

[1] Chao MJ;Niu X;Yuan B;Liang EJ;Wang DS .Preparation and characterization of in situ synthesized B4C particulate reinforced nickel composite coatings by laser cladding[J].Surface & Coatings Technology,2006(3/4):1102-1108.
[2] 吴朝锋,马明星,刘文今,钟敏霖,张伟明,张红军.激光原位制备复合碳化物颗粒增强铁基复合涂层及其耐磨性的研究[J].金属学报,2009(08):1013-1018.
[3] 郭绍义,李兴俊,杨秋合,杨金林,孟凡英.激光熔覆WC-Ni/TiC涂层的组织和摩擦磨损性能研究[J].材料工程,2008(06):72-75.
[4] 周圣丰,曾晓雁,胡乾午,黄永俊.激光-感应复合熔覆Ni基WC复合层的工艺研究[J].激光技术,2009(02):124-126,137.
[5] Lee KW.;Chen YH.;Chung YW.;Keer LM. .Hardness, internal stress and, thermal stability of TiB2/TiC multilayer coatings synthesized by magnetron sputtering with and without substrate rotation[J].Surface & Coatings Technology,2004(0):591-596.
[6] 杨宁,杨帆.激光功率对WO3-V2O5-C镍基熔覆层硬度的影响[J].表面技术,2013(05):39-41.
[7] 黄凤晓,江中浩,刘喜明.铁基合金+WC激光熔覆层的显微组织与性能[J].金属热处理,2009(01):67-71.
[8] 何良华,周芳,杨蕙瑶.激光熔覆原位合成TiC-TiB2增强钴基复合涂层的研究[J].激光技术,2013(03):306-309.
[9] 邹群,水中和,徐昌盛,陈克勤,萧以德.表面处理技术提高混凝土内置钢筋耐久性的研究[J].装备环境工程,2012(04):19-22.
[10] 王建宏;白培康;李玉新.激光熔覆原位合成TiC/Al陶瓷基复合涂层增强Ti6Al4V研究[J].稀有金属材料与工程,2011(z1):496-498.
[11] de Oliveira U;Ocelik V;De Hosson JTM .Microstresses and microstructure in thick cobalt-based laser deposited coatings[J].Surface & Coatings Technology,2007(14):6363-6371.
[12] 刘旭,王文先,崔泽琴,许并社.B4C含量对激光熔覆Fe基陶瓷复合涂层组织及性能的影响[J].材料热处理学报,2011(z1):102-106.
[13] 张燕,张行,刘朝辉,邓智平.热喷涂技术与热喷涂材料的发展现状[J].装备环境工程,2013(03):59-62.
[14] 王文丽 .原位自生颗粒增强镍基激光熔覆涂层研究[D].郑州大学,2007.
[15] 牛薪,晁明举,周笑薇,王东升,袁斌.激光熔覆原位生成B4C颗粒增强镍基复合涂层的研究[J].中国激光,2005(11):1583-1588.
[16] 刘贵仲,钟文华,高原.激光熔覆涂层缺陷的形成及防治[J].表面技术,2012(05):89-92.
[17] GUO Chun;ZHOU Jian-song;CHEN Jian-min et al.High Temperature Wears Resistance of Laser Cladding NiCrBSi and NiCrBSi/WC-Ni Composite Coatings[J].WEAR,2011,270(7/8):492-498.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%