欢迎登录材料期刊网

材料期刊网

高级检索

采用混酸氧化及表面接枝改性的方法制备了表面含不同官能团的多壁碳纳米管(MWCNTs),并研究了不同MWCNTs对环氧树脂的低温(77K)抗冲击性能及热膨胀系数(CTE)的影响。结果表明:通过接枝反应将—NCO基团封端的PEO齐聚物引入MWCNTs表面,可提高MWCNTs在环氧树脂基体中的分散性,加强MWCNTs与环氧树脂的界面作用;相对于纯环氧树脂,添加质量分数为0.5%的纯MWCNTs、氧化MWCNTs和表面接枝MWCNTs改性后的环氧树脂的低温冲击强度分别升高了10.27%、26.13%和32.95%,而CTE则分别降低了14.79%、29.59%和40.29%。这表明表面接枝改性MWCNTs可明显提高环氧树脂基体的低温抗冲击性能并降低环氧树脂在玻璃化转变温度下的CTE。

The modified multi-walled carbon nanotubes(MWCNTs) with different functional groups on the surface were prepared by the methods of mixed acid oxidation and surface graft reaction.The impact strength at cryogenic temperature and the coefficient of thermal expansion(CTE) values for the pure epoxy and different MWCNTs modified epoxy were studied.The results show that —NCO group terminated PEO oligomer can be introduced to the surface of MWCNTs through surface grafting reaction,which can improve the dispersion state of nanotubes and strengthen the interfacial bonding between nanotubes and epoxy matrix.In comparison to pure epoxy,impact strength at cryogenic temperature of MWCNTs,O-MWCNTs and S-MWCNTs modified epoxy composites with 0.5% mass fraction are increased 10.27%,26.13% and 32.95%,respectively,and CTE values under Tg range are decreased 14.79%,29.59% and 40.29%,respectively.It indicates that S-MWCNTs can improve the impact strength at cryogenic temperature and decrease the CTE values under Tg range of epoxy resins.

参考文献

[1] 陈平,蹇锡高,陈辉,等.碳纤维复合材料发动机壳体用韧性环氧树脂基体的研究[J].复合材料学报,2002.l9(2):24-27.
[2] 黄远,万怡灶,何芳,等.碳纤维/环氧树脂单向复合材料的吸湿残余应力研究[J].航空材料学报,2009.29(4):57-62
[3] Bhowmik S, Bonin H W, Bui V T, et al. Modification ofhigh-performance polymer composite through high- energy radiation and low- pressure plasma for aerospace and space applications [J]. Journal of Applied Polymer Science, 2006, 102(2) : 1959-1967.
[4] Kim M G, Hong J S, Kang S G. Enhancement of the crack growth resistance of a carbon/epoxy composite by adding multi-walled carbon nanotubes at a cryogenic temperature [J]. Composites Part A, 2008, 39(4): 647-654.
[5] Nobelen M, Hayes B S, Seferis J C. Influence of elastomer distribution on the cryogenic microcracking of carbon fiber/ epoxy composites [J]. Journal of Applied Polymer Science, 2003, 90(8): 2268-2275.
[6] 张丽,赫玉欣.碳纳米管纳米复合材料的研究现状及问题[J].广东化工,2011,38(5):42-43.
[7] Du J H, Bai J, Cheng H M. The present status and key problems of carbon nanotube based polymer composites [J]. Express Polymer Letters, 2007, 1(5):253-273.
[8] Kwon Y K, Berber S, Tomanek D. Thermal contraction of carbon fullerenes and nanotubes [J]. Physical Review Letters, 2004, 92(1): 015901.
[9] Okpalugo T I T, Papakonstantinou P, Murphy H, et al. High resolution XPS characterization of chemical functionalized MWCNTs and SWCNTs [J]. Carbon, 2005, 43(1): 153-161.
[10] Yang K, Gu M Y, Guo Y P, et al. Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites[J]. Carbon, 2009, 47(7): 1723-1737.
[11] Emmanuel G R, Pascault J P, Bonnet A, et al. A new class of epoxy thermosets [J]. Macromolecular Symposia, 2003, 198 (1): 309-322.
[12] Day R J, Lovell P A, Wazzan A A. Toughened carbon/epoxy eomposites made by using core/shell particles [J]. Composite Science and Technology, 2001, 61(1): 41-56.
[13] 赫玉欣,马建中,张丽,等.OMMT/EVA-g-PU纳米复合材料的研究[J].复合材料学报,2009,26(2):54-58.
[14] 陈林涛.单壁碳纳米管的拉曼光谱及SERRS光谱研究[D].开封:河南大学,2004.
[15] Yang S Y, Ma C C, Teng C C, et al. Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites [J]. Carbon, 2010, 48(3):592-603.
[16] HadjievVG, Warren G L, Sun L Y, et al. Raman microscopy of residual strains in carbon nanotube/epoxy composites [J]. Carbon, 2010, 48(6): 1750-1756.
[17] Papagelis K, Kalyva M, Tasis D, et al. Covalently functionalized carbon nanotubes as macroinitiators for radical polymerization [J]. Physica Status Solidi, 2007, 244 (11) 4046-4050.
[18] Zhang G, Sun S, Yang D, et al. The surface analytical characterization of carbon fibers functionalized by H2SO4/ HNO3 treatment [J]. Carbon, 2008, 46(2): 196-205.
[19] Xia W, Wang Y, Bergstrgβer R, et al. Surface characterization of oxygen-functionalized multi-walled carbon nanotubes by high - resolution X - ray photoelectron spectroscopy and temperature-programmed desorption [J]. Applied Surface Science, 2007, 254(1): 247-250.
[20] Zhu Z Z, Wang Z, Li H L. Functional multi- walled carbon nanotube/polyaniline composite films as supports of platinum for formic acid electrooxidation [J]. Applied Surface Science, 2008, 254(10): 2934-2940.
[21] Kathi J, Rhee K Y. Surface modification of multi- walled carbon nanotubes using 3 - aminopropyltriethoxysilane [J]. Journal of Materials Science, 2008, 43(1): 33-37.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%