First-principles calculations based on density functional theory-generalized gradient approximation method have been performed on cesium adsorption on Si(001)(2x1) surface. The optimized geometries and adsorption energies have been obtained and the preferred binding sites have been determined for the coverage (Theta) of one monolayer and half a monolayer. At Theta = 0.5 ML the most stable adsorption site is shown to be T3 site. At Theta = 1 ML two Cs atoms are adsorbed at HH and T3 sites, respectively. It was found that the saturation coverage of Cs for the Si(001)(2x1)-Cs surface is one monolayer instead of half a monolayer. This finding supports the majority of experimental observations but does not support recent coaxial impact collision ion scattering spectroscopy investigations [Surf. Sci. 531, L340 (2003)] and He+ Rutherford backscattering spectroscopy studies [Phys. Rev. B 62, 4545 (2000)]. Mulliken charge and overlap population analysis showed that the Cs-Si bond is indeed ionic rather than polarized covalent as generally assumed for alkali metal (AM) on Si(001)(2x1) surface. Geometrical structure analysis seems to have limitations in determining the nature of AM-substrate bond. We also found that the silicon surface is metallic and semiconducting for the coverages of 0.5 and 1 ML, respectively. (c) 2005 American Institute of Physics.
参考文献
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%