欢迎登录材料期刊网

材料期刊网

高级检索

With the help of an electromagnetic stirring device and alloy melt quenching technology, the microstructure of semi-solid AZ91D magnesium alloy slurry stirred by a rotationally electromagnetic field was studied and the experimental results are shown as the following. The primary α-Mg grains are refined obviously when the slurry is stirred by a rotational electromagnetic field during continuously cooling and they are eventually changed to fine rosette grains or spherical grains. If the above semi-solid slurry is further stirred isothermally for some time, much more spherical primary α-Mg grains can be obtained. If the melt is first cooled down to a given semi-solid temperature and then starts being stirred by the rotational electromagnetic field, the primary α-Mg dendrites will be large, and a longer time will be taken and a larger stirring power will be needed for the secondary arms of the dendrites to be remelted on the roots to prepare an ideal semi-solid slurry. Theoretical analysis indicates that the strong flow motion leads to a more even temperature field and a solute field and stronger man-made temperature fluctuation in the AZ91D magnesium alloy melt so that the spherical primary α-Mg grains are increased in the slurry. Moreover, all the measures promoting the temperature fluctuation will be favorable to the formation of spherical primary α-Mg grains and all the factors increasing the arm's root remelting difficulty will be favorable to the formation of rosette-type primary α-Mg grains.

参考文献

[1]
[2]
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%