欢迎登录材料期刊网

材料期刊网

高级检索

采用Gleeble-3500热模拟机研究6013铝合金在613~773 K、0.001~10 s-1下的平面应变流变力学行为。基于热传导对材料变形热效应的影响,优化材料变形温升的计算方程,分析变形能及热传导对实测流变应力误差的影响。结果表明:热传导对变形温升的影响不可忽略,其影响随着真应变的增加和应变速率的降低而更加显著;通过热传导对变形温升的修正,变形温升随变形能的增大呈非线性变化趋势;在较高应变速率和较低变形温度下,变形能及热传导对材料变形温升及稳态流变应力的影响明显;可用包含Zener-Hollomon参数(Z)的本构方程预测6013铝合金在不同变形条件下的流变应力峰值,其热变形激活能为364.48 kJ/mol;修正的实测峰值应力与预测值的吻合程度有所提高,平均相对误差为5.54%。

The hot plane compression deformation behavior of 6013 aluminum alloy was investigated on Gleeble-3500 thermal-mechanical simulating tester in the temperature range from 613 to 773 K and strain rate range from 0.001 to 10 s-1. The mathematical expression of temperature rising is optimized based on the influence of the heat conduction during hot deformation. Meanwhile, the effects caused by deformation energy and heat conduction on the measured stress errors were analyzed. The results show that the influence of heat conduction cannot be neglected and becomes more obvious with increasing true strain and decreasing strain rate. The relationship between the change of temperature rising corrected by heat conduction and deformation heating is nonlinear. The temperature rising and the steady flow stress are seriously affected by deformation energy and heat conduction during higher stain rate and lower temperature. The peak flow stress can be represented by the Zener-Hollomon parameter (Z) in the hyperbolic sine equation with the hot deformation activation energy of 364.48 kJ/mol. The corrected measured value exhibits a better agreement with the flow stress predicted by the constitutive equation, and the average relative error is 5.54%.

参考文献

[1] 黄长清,刁金鹏,邓华,Bing-ji Li,胡兴华.6016铝合金热变形实验模拟热轧显微组织演变[J].中国有色金属学报(英文版),2013(06):1576-1582.
[2] Luo, J.;Li, M.Q.;Wu, B..The correlation between flow behavior and microstructural evolution of 7050 aluminum alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2011:559-564.
[3] 何振波,李慧中,梁霄鹏,尹志民.Al-Zn-Mg-Sc-Zr合金的热变形行为及加工图[J].中国有色金属学报,2011(06):1220-1228.
[4] GOELZ R L;SEMIATIN S L .The adiabatic correction factor for deformation heating during the uniaxial compression test[J].Journal of Materials Engineering and Performance,2001,10(06):710-717.
[5] DEVADAS C;BARAGAR D;RUDDLE G;SAMARASEKERA I V .Thermal and metallurgical state of steel strip during hot rolling.Part Ⅱ:Factors influencing rolling loads[J].Metallurgical Transactions A,1991,22(02):321-333.
[6] 吴文祥,韩逸,钟皓,乐永康,张辉.2026铝合金热压缩变形流变应力行为[J].中国有色金属学报,2009(08):1403-1408.
[7] Wang, C.;Yu, F.;Zhao, D.;Zhao, X.;Zuo, L..Hot deformation and processing maps of DC cast Al-15%Si alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:73-80.
[8] Jingqi Zhang;Hongshuang Di;Xiaoyu Wang;Yu Cao;Jiecen Zhang;Tianjun Ma .Constitutive analysis of the hot deformation behavior of Fe-23Mn-2Al-0.2C twinning induced plasticity steel in consideration of strain[J].Materials & design,2013(Feb.):354-364.
[9] MATAYA M C;SACKSCHEWSKY V E .Effect of internal heating during hot compression on the stress-strain behavior of alloy 304L[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1994,25(12):2737-2752.
[10] 王保国;刘淑艳;王新泉;朱俊强.传热学[M].北京:机械工业出版社,2009:3-6,278-289.
[11] 朱德才,张立文,裴继斌,张国梁,韦荣选.固态塑性成形过程中界面接触换热的实验研究[J].塑性工程学报,2008(01):92-96.
[12] XU Rui-ping;FENG Hai-dong;ZHAO Lan-ping;XU Lie .Experimental investigation of thermal contact conductance at low temperature based on fractal description[J].International Journal of Heat and Mass Transfer,2006,33(07):811-818.
[13] McQueen HJ.;Ryan ND. .Constitutive analysis in hot working[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1-2 Special Issue SI):43-63.
[14] Dipti Samantaray .Constitutive analysis to predict high-temperature flow stress in modified 9Cr-1Mo(P91) steel[J].Materials & design,2010(2):981-984.
[15] 张毅,刘平,田保红,陈小红,刘勇.Cu-Ni-Si-P-Cr 合金高温热变形行为及动态再结晶[J].中国有色金属学报,2013(04):970-976.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%