欢迎登录材料期刊网

材料期刊网

高级检索

采用第一性原理对Mg掺杂的不同尺寸MgZnO合金纳米线的晶体结构、分布行为、电子结构和波函数进行了计算和分析.研究表明,Mg在合金纳米线中偏向均匀分布并且Mg能有效地在较大范围内线性调节纳米线的带隙.此外,通过计算结合能得到MgxZn1-xO纳米线从纤锌矿结构到岩盐矿结构的相变点在x=0.65,和实验上薄膜的转变点(0.62)很接近.

参考文献

[1] CUI Y;LIEBER C M .Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks[J].Science,2001,291(5505):851-853.
[2] Lauhon LJ;Gudiksen MS;Wang D;Lieber CM .Epitaxial core-shell and core-multishell nanowire heterostructures.[J].Nature,2002(6911):57-61.
[3] TIAN B;ZHENG X L;KEMPA T J et al.Coaxial silicon nanowires as solar cells and nanoelectronic power sources[J].Nature,2007,449(7164):885-889.
[4] Kim, DC;Kong, BH;Mohanta, SK;Cho, HK;Park, JH;Yoo, JB .Selective Crystalline Seed Layer Assisted Growth of Vertically Aligned MgZnO Nanowires and Their High-Brightness Field-Emission Behavior[J].Crystal growth & design,2009(10):4308-4314.
[5] Lee CY;Tseng TY;Li SY;Lin P .Single-crystalline MgxZn1-xO (0 <= x <= 0.25) nanowires on glass substrates obtained by a hydrothermal method: growth, structure and electrical characteristics[J].Nanotechnology,2005(8):1105-1111.
[6] Chul-Ho Lee;Jinkyoung Yoo;Yong-Joo Doh;Gyu-Chul Yi .ZnO/Mg_(0.2)Zn_(0.8)O coaxial nanorod heterostructures for high-performance electronic nanodevice applications[J].Applied physics letters,2009(4):043504-1-043504-3-0.
[7] PARK W I;AN S J;YANG J L et al.Photoluminescent properties of ZnO/Zn0.8 Mg0.2 O nanorod single-quantum-well structures[J].Journal of Physical Chemistry B,2004,108(40):15457-15460.
[8] LORENZ M;KAIDASHEV E M;RAHM A et al.MgxZn1-x O(0.1《x《0.2) nanowire arrays on sapphire grown by highpressure pulsed-laser deposition[J].Applied Physics Letters,2005,86(14):143113-143115.
[9] Hsu-Cheng Hsu;Chun-Yi Wu;Hsin-Ming Cheng;Wen-Feng Hsieh .Band gap engineering and stimulated emission of ZnMgO nanowires[J].Applied physics letters,2006(1):013101-1-013101-3-0.
[10] ZHI M J;ZHU L P;YE Z Z et al.Preparation and Properties of Ternary ZnMgO Nanowires[J].Journal of Physical Chemistry B,2005,109(50):23930-23934.
[11] Ku CH;Chiang HH;Wu JJ .Bandgap engineering of well-aligned Zn1-xMgxO nanorods grown by metalorganic chemical vapor deposition[J].Chemical Physics Letters,2005(1/3):132-135.
[12] Pan CJ;Hsu HC;Cheng HM;Wu CY;Hsieh WF .Structural and optical properties of ZnMgO nanostructures formed by Mg in-diffused ZnO nanowires[J].International Journal of Quantum Chemistry,2007(4):1188-1192.
[13] Yang W.;Hullavarad SS.;Nagaraj B.;Takeuchi I.;Sharma RP.;Venkatesan T.;Vispute RD.;Shen H. .Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors[J].Applied Physics Letters,2003(20):3424-3426.
[14] Ordejon P.;Soler JM.;Artacho E. .SELF-CONSISTENT ORDER-N DENSITY-FUNCTIONAL CALCULATIONS FOR VERY LARGE SYSTEMS[J].Physical Review.B.Condensed Matter,1996(16):10441-10444.
[15] Sanchezportal D.;Artacho E.;Soler JM.;Ordejon P. .DENSITY-FUNCTIONAL METHOD FOR VERY LARGE SYSTEMS WITH LCAO BASIS SETS[J].International Journal of Quantum Chemistry,1997(5):453-461.
[16] Soler JM.;Artacho E.;Gale JD.;Garcia A.;Junquera J.;Ordejon P. Sanchez-Portal D. .The SIESTA method for ab initio order-N materials simulation[J].Journal of Physics. Condensed Matter,2002(11):2745-2779.
[17] TROULLIER N;MARTINS J L .Efficient pseudopotentials for plane-wave calculations[J].Physical Review B:Condensed Matter,1991,43(03):1993-2006.
[18] Liping Zhu;Mingjia Zhi;Zhizhen Ye;Binghui Zhao .Catalyst-free two-step growth of quasialigned ZnMgO nanorods and their properties[J].Applied physics letters,2006(11):113106-1-113106-3-0.
[19] Yang AL;Wei HY;Liu XL;Song HP;Zheng GL;Guo Y;Jiao CM;Yang SY;Zhu QS;Wang ZG .Synthesis and characterization of well-aligned Zn1-xMgxO nanorods and film by metal organic chemical vapor deposition[J].Journal of Crystal Growth,2009(2):278-281.
[20] Jinkyoung Yoo;Young Joon Hong;Gyu-Chul Yi;Bonghwan Chon;Taiha Joo .Photoluminescent characteristics of Mg_xZn_(1-x)O(0 ≤ x ≤ 0.18) nanorods[J].Semiconductor Science and Technology,2008(9):93-96.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%