欢迎登录材料期刊网

材料期刊网

高级检索

室温下采用等径弯曲通道变形(Equal Channel Angular Pressing,ECAP)C方式进行了纯铜(99.95%)12道次挤压变形。通过等温和等时退火,研究ECAP变形后铜的退火行为,并研究了等径弯曲通道变形和退火后纯铜的显微硬度和显微结构变化。分析了ECAP应变量、退火时间和退火温度对超细晶铜的再结晶行为、抗软化性能的影响。结果表明:ECAP变形后的超细晶铜在退火过程中,表现出不连续再结晶现象;ECAP降低了铜的热稳定性,变形道次越高再结晶温度越低。退火后稳态晶粒尺寸随变形道次的增加而细化,硬度值随变形道次的增加而增大,回归分析表明,晶粒尺寸与硬度之间的关系符合Hall-Petch公式。

Annealing behavior of pure copper (99.95%) after equal channel angular pressing (ECAP) was investigated by isothermal annealing and isochronal annealing. The copper were deformed at room temperature by ECAP up to 12 passes via rout C and its microstructure and microhardness evolution after deformation and annealing were studied. The effect of ECAP strain, annealing time and annealing temperature on evolution of microstructure and hardness of the ultra-fine grained( UFG) copper was analyzed. The results show that the mierostructure of the ECAP processed copper exhibits discontinuous recrystallization during subsequent annealing. The study reveals a very low thermal stability of the ECAP processed pure copper. The temperature for discontinuous recrystallization of ECAP deformed samples is found to substantially decrease with increasing number of passes. The microhardness of the deformed copper is improved with increasing number of ECAP passes owing to the decreasing of the steady-state grain size after annealing. Regression analysis shows that the relationship between grain size and hardness is in agreement with Hall-Perch expression.

参考文献

[1] Valiev RZ.;Alexandrov IV.;Islamgaliev RK. .Bulk nanostructured materials from severe plastic deformation [Review][J].Progress in materials science,2000(2):103-189.
[2] W.Q. Cao;A. Godfrey;W. Liu .EBSP study of the annealing behavior of aluminum deformed by equal channel angular processing[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):420-425.
[3] Wang G.;Wu SD.;Zuo L.;Esling C.;Wang ZG.;Li GY. .Microstructure, texture, grain boundaries in recrystallization regions in pure Cu ECAE samples[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):83-90.
[4] Ferrasse S;Segal V M;Alford F .Texture evolution during equal channel angnlar extrusion (ECAE):Part II.An effect of post-deformation annealing[J].Materials Science and Engineering A,2004,372(1 - 2):235-244.
[5] 石凤健,王雷刚,王海龙,汪建敏.等径角挤压制备CuCrZr合金的抗软化性能[J].材料热处理学报,2009(06):94-97.
[6] Z. Horita;T. Fujinami;M. Nemoto;T. G. Langdon .Improvement of mechanical properties for Al alloys using equal-channel angular pressing[J].Journal of Materials Processing Technology,2001(3):288-292.
[7] 姜庆伟,刘印,王尧,晁月盛,李小武.超细晶铜在退火与高温变形条件下微观结构的不稳定性研究[J].金属学报,2009(07):873-879.
[8] Terence G. Langdon .The principles of grain refinement in equal-channel angular pressing[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2007(1/2):3-11.
[9] Poortmans S;Verlinden B .Thermal stability of CP-aluminium during annealing after ECAE[J].Materials Science Forum,2004,467 - 470(10):319-1324.
[10] Li S Y;Beyerlein I J;Alexander D J et al.Texture evolution during muhi-pass equal channel angular extrusion of copper:Neutron diffraction characterization and polycrystal modeling[J].Acta Materialia,2005,53(07):2111-2125.
[11] C.Y. Yu;P.L. Sun;P.W. Kao;C.P. Chang .Evolution of microstructure during annealing of a severely deformed aluminum[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2004(2):310-317.
[12] X. Molodova;G. Gottstein;M. Winning;R.J. Hellmig .Thermal stability of ECAP processed pure copper[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2007(0):204-213.
[13] Park KT.;Shin DH. .Annealing behavior of submicrometer grained ferrite in a low carbon steel fabricated by severe plastic deformation[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1/2):79-86.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%