欢迎登录材料期刊网

材料期刊网

高级检索

针对钢铁企业富余煤气的频繁波动对自备电厂能耗及煤气平衡影响严重,且难以通过建立机制模型进行预测的问题,依据HP滤波和Elman神经网络性质建立了HP(2)-Elman预测模型.并根据自备电厂能源利用的特点,建立拟合模型求解锅炉的经济运行负荷,在此基础上对富余煤气进行优化调度.模型应用表明:所建预测模型对煤气柜位预测平均相对误差小于2.8%,自备电厂煤气供入量30、45、60个点预测平均相对误差分别为1.7%、1.6%、1.6%.根据预测结果进行的优化调度可为煤气柜位调整及自备电厂锅炉负荷分配提供操作依据,一年按照330天计算,可多产蒸汽约100495t,节能约11670481kg标煤.

参考文献

[1] 王建军 .钢铁企业物质流、能量流及其相互关系研究与应用[D].沈阳:东北大学,2008.
[2] 张琦 .钢铁联合企业煤气资源合理利用及优化分配研究[D].东北大学,2008.
[3] 张晓平,赵珺,王伟,冯为民,陈伟昌.转炉煤气柜位的多输出最小二乘支持向量机预测[J].控制理论与应用,2010(11):1463-1470.
[4] 张晓平,赵珺,王伟,丛力群,冯为民,陈伟昌.基于最小二乘支持向量机的焦炉煤气柜位预测模型及应用[J].控制与决策,2010(08):1178-1183,1188.
[5] ZHANG Xiao-ping;ZHAO Jun;WANG Wei et al.An Optimal Method for Prediction and Adjustment on Byproduct Gas Holder in Steel Industry[J].Expert Systems With Applications,2011,38:4588.
[6] Dutta G;Sinha G P;Roy P et al.A Linear Programming Model for Distribution of Electrical Energy in a Steel Plant[J].International Transactions in Operational Research,1997,1(01):17.
[7] Kim J H;Yi H S;Han C .Plant Wide Optimal Byproduct Gas Distribution and Holder Level Control in the Iron and Steel Making Process[J].Korean Journal of Chemical Engineering,2003,20(03):429.
[8] Kim J H;Yi H S;Han C .A Novel MILP Model for Plantwide Multiperiod Optimization of Byproduct Gas Supply System in the Iron and Steel Making Process[J].Chemical engineering Research and Design,2003,81(08):1015.
[9] Hodrick R J;Prescott E C .Postwar U S.Business Cycles:An Empirical Investigation[J].Journal of Money Credit and Banking,1997,29:1.
[10] Packard N H;Crutchfietd J P;Farmer J D et al.Geometry From a Time Series[J].Physical Review Letters,1980,45(09):712.
[11] Takens E .Deterrning Strange Attractors in Turbulence[J].Lecture Notes in Mathematics,1981,898:361.
[12] Pham DT.;Liu X. .TRAINING OF ELMAN NETWORKS AND DYNAMIC SYSTEM MODELLING[J].International Journal of Systems Science: The Theory and Practice of Mathematical Modelling, Simulation, Optimization and Control in Relation to Biological, Economic, Industrial and Transportation Systems,1996(2):221-226.
[13] Ao S I;Palade V .Ensemble of Elman Neural Networks and Support Vector Machines for Reverse Engineering of Gene Regulatory Networks[J].Applied Soft Computing Journal,2011,11:1718.
[14] 李锡杰;师硕;王旭 .基于Elman神经网络的机电信号分类[J].人工智能,2006,22(08):305.
[15] 何玉婉 .基于Elman神经网络的高速公路入口匝道预测控制仿真研究[D].西南交通大学,2008.
[16] 任丽娜 .基于Elman神经网络的中期电力负荷预测模型研究[D].兰州理工大学,2007.
[17] 吕飞,沈振中.基于Elman神经网络的面板堆石坝沉降预测模型[J].水电能源科学,2011(12):56-59.
[18] Xiang Li;Guanrong Chen;Zengqiang Chen;Zhuzhi Yuan .Chaotifying linear Elman networks[J].IEEE Transactions on Neural Networks,2002(5):1193-1199.
[19] Cheng-Yuan Liou;Jau-Chi Huang;Wen-Chie Yang .Modeling word perception using the Elman network[J].Neurocomputing,2008(16/18):3150-3157.
[20] GAO X Z;GAO X M;Ovaska S J.Trajectory Control Based on a Modified Elman Neural Network[A].Orlando Florida,USA:[s.n.],1997:1212.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%