欢迎登录材料期刊网

材料期刊网

高级检索

为了解镁合金连续挤压扩展流动规律与工艺条件的关系,基于 DEFORM?3D 软件,建立镁合金的刚塑性有限元模型,通过数值模拟分析连续挤压过程坯料沿纵向对称面上的速度演变规律,探讨挤压轮转速对坯料各层面速度分布的影响机制。结果表明,在连续挤压过程中,金属流动速度在各变形区呈不同变化趋势。轮槽区的速度呈现由轮槽底面向封料面逐渐降低的分布形态;直角弯曲区的流道底部速度最高;扩展区由中心向两侧流动速度逐渐减小;在阻流区和模具区,流动速度的差别减小。随着挤压轮转速的增大,直角弯曲区和扩展区各层面金属的速度差值增大,流动的不均匀程度增加。连续挤压过程中金属的这种流动分布特点缘于轮槽面的摩擦驱动力与型腔壁摩擦阻力的相互作用。

For understanding the relationship between the expansion flow and process conditions, based on the DEFORM-3D software, the model of rigid-plastic FEM was established. The velocity evolution rule on the longitudinal symmetry plane was analyzed during the forming process through numerical simulation. The effect of extrusion wheel velocity on the metal velocity distributions of all surfaces was investigated. The results show that the metal velocity presents various changing forms in different deformation regions. In the groove region, the velocity gradually decreases from groove bottom to enclosing surface. In the rectangular bending region, the velocity at the channel bottom is the highest. In the expansion region, the velocity gradually decreases from the center to the two sides. In the choked flow and die regions, the flow velocity differences are smaller than those of other regions. With the increase of wheel velocities, in the rectangular bending and expansion regions, the differences of the highest and lowest velocities and the non-uniformity of flow increase for all surfaces. The flow distribution characteristics of the continuous extrusion are induced by the interaction between the driving force of the wheel groove and the friction resistance of the cavity wall.

参考文献

[1] MITCHELL K J .Production of wire and allied products by the conform process[J].METALLURGIA,1982,8(11):584-589.
[2] ETHERINGTON C;SLATER H K.The extrusion of aluminum and its alloys by the CONFORM process[A].Atlanta:Aluminum Association,1984:31-38.
[3] MADDOCK B .Aluminum rod and other products by CONFORM[J].Wire Industry,1987,54(12):728-731.
[4] LANGERWEGER J;MADDOCK B.Recent developments in CONFORM and CASTEX continuous extrusion technology[J].Light Metal Age,1988(08):23-28.
[5] GREEN D .Continuous extrusion forming of wire sections[J].Journal of the Institute of Metals,1972,100:295-300.
[6] 谢玲玲,宋宝韫.铜母线连续挤压扩展成形过程的三维有限元数值模拟[J].锻压技术,2005(04):72-75.
[7] 运新兵,游伟,赵颖,李冰,樊志新.铜板带的连挤连轧成形速度[J].中国有色金属学报(英文版),2013(04):1108-1113.
[8] 曹富荣,温景林,丁桦,王昭东,李英龙,管仁国,侯辉.带扩展腔的纯铝及铝钛硼合金连续挤压力的分析与实验研究[J].中国有色金属学报(英文版),2013(01):201-207.
[9] 代娜娜 .大宽厚比铜排连续挤压物理模拟与生产实践[D].昆明:昆明理工大学,2012.
[10] 陈旭,运新兵,赵颖,樊志新,宋宝韫.分流模结构对连续挤压扩展成形的影响[J].塑性工程学报,2010(02):68-72.
[11] YUN X B;YAO M L;WU Y;SONG B Y .Numerical simulation of continuous extrusion extending forming under the large expansion ratio for copper strip[J].Applied Mechanics and Materials,2011,80/81:91-95.
[12] 运新兵,姚明亮,赵颖,杨俊英,李冰,宋宝韫.阻流环及模具结构对大扩展比连续挤压成形的影响[J].塑性工程学报,2011(04):1-5.
[13] 吴朋越,谢水生,吴予才,程磊,黄国杰,和优锋.不同靴座扩展出口宽度下大宽厚比铜扁线连续挤压过程的数值模拟[J].机械科学与技术,2008(02):260-263.
[14] 吴朋越,谢水生,程磊.不同阻碍角下大宽厚比铜扁线连续挤压过程数值模拟[J].有色金属,2009(03):37-41,57.
[15] L. Li;H. Zhang;J. Zhou;J. Duszczyk;G.Y. Li;Z.H. Zhong .Numerical and experimental study on the extrusion through a porthole die to produce a hollow magnesium profile with longitudinal weld seams[J].Materials & design,2008(6):1190-1198.
[16] Y.H.Kim;J.R.Cho .A study of the application of upper bound method to the CONFORM process[J].Journal of Materials Processing Technology,2000(1/3):153-157.
[17] 郭强,张辉,陈振华,严红革,夏伟军,傅定发.AZ31镁合金的高温热压缩流变应力行为的研究[J].湘潭大学自然科学学报,2004(03):108-111.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%