欢迎登录材料期刊网

材料期刊网

高级检索

采用直流电沉积方法制备晶粒尺寸为15 nm的Ni-49.2%Co(质量分数)和16 nm的Ni-66.7%Co(质量分数)合金。采用XRD、TEM和MTS?810万能材料试验机对其微观结构和力学性能进行分析。结果表明:两种合金分别是单相FCC结构和FCC与HCP共存的双相结构。固溶强化和晶粒细化的作用使两种Ni-Co合金都具有很高的抗拉强度;且Co元素的引入降低材料的层错能,提高其应变硬化能力,使Ni-Co合金的塑性也明显提高;Ni-49.2%Co合金的抗拉强度(σb )和断裂伸长率(δ)分别为1650 MPa和9%,Ni-66.7%Co合金的σb和δ分别为2200 MPa和12%。Ni-66.7%Co合金中FCC和HCP结构相互协调,在变形过程中释放内应力,使材料应变硬化能力得以保持,所以获得更高的强度和塑性。

Nanocrystalline Ni-49.2%Co (mass fraction) and Ni-66.7%Co (mass fraction) alloys were synthesized by direct current electrodeposition with grain sizes of 15 and 16 nm, respectively. The Ni-49.2%Co alloy shows single FCC phase, and Ni-66.7%Co alloy possesses a mixture structure of FCC and HCP phase. The microstructure and mechanical properties of were studied by XRD, TEM and tensile tests carried out on MTS?810 tester. The high strength of Ni-Co alloys is attributed to the grain refinement and solid-solution hardening effects. The addition of Co element decreases the stacking fault energy of nanocrystalline Ni alloy, which improves the strain hardening ability and thus enhances the ductility. The ultimate tensile strength (σb ) and elongation to failure (δ) of Ni-49.2%Co alloy are 1 650 MPa and 9%, respectively. Correspondingly, the σb and δ of Ni-66.7%Co alloy are 2 200 MPa and 12%, respectively. Cooperative deformation of the two phases releases the stress during deformation effectively, which contributes to the sustained high strain hardening and ductility of the Ni-66.7%Co alloy.

参考文献

[1] Hibbard GD;Aust KT;Erb U .Thermal stability of electrodeposited nanocrystalline Ni-Co alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2006(1-2):195-202.
[2] 许伟长,戴品强.电沉积微纳米镍的组织结构与力学性能[J].中国有色金属学报,2009(10):1815-1821.
[3] 冯广海,杜忠泽,闫敦,王经涛.纳米/微米Cu的力学性能数值模拟[J].中国有色金属学报,2012(01):201-207.
[4] 秦丽元 .电沉积纳米晶镍及镍钴合金的微观组织和性能研究[D].长春:吉林大学材料学院,2010.
[5] Ruslan Valiev .Nanostructuring of metals by severe plastic deformation for advanced properties[J].Nature materials,2004(8):511-516.
[6] L. Lu;X. Chen;X. Huang;K. Lu .Revealing The Maximum Strength In Nanotwinned Copper[J].Science,2009(5914):607-610.
[7] Xixun Shen;Jianshe Lian;Zhonghao Jiang;Qing Jiang .The Optimal Grain Sized Nanocrystalline Ni with High Strength and Good Ductility Fabricated by a Direct Current Electrodeposition[J].Advanced Engineering Materials,2008(6):539-546.
[8] Hongqi Li;Fereshteh Ebrahimi .Transition of deformation and fracture behaviors in nanostructured face-centered-cubic metals[J].Applied physics letters,2004(21):4307-4309.
[9] 许伟长,戴品强,郑耀东.钴含量对电沉积纳米晶镍钴合金组织与力学性能的影响[J].中国有色金属学报,2010(01):92-99.
[10] Liu YN;Yang H;Liu Y;Jiang BH;Ding J;Woodward R .Thermally induced fcc <-> hcp martensitic transformation in Co-Ni[J].Acta materialia,2005(13):3625-3634.
[11] A. A. Karimpoor;U. Erb;K. T. Aust;G. Palumbo .High strength nanocrystalline cobalt with high tensile ductility[J].Scripta materialia,2003(7):651-656.
[12] Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale[J].Science,2009(Apr.17 TN.5925):349.
[13] Ebrahimi F;Ahmed Z;Li H .Effect of stacking fault energy on plastic deformation of nanocrystalline face-centered cubic metals[J].Applied physics letters,2004(17):3749-3751.
[14] V. Yamakov;D. Wolf;S. R. Phillpot;A. K. Mukherjee;H. Gleiter .Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation[J].Nature materials,2004(1):43-47.
[15] Youssef KM;Scattergood RO;Murty KL;Horton JA;Koch CC .Ultrahigh strength and high ductility of bulk nanocrystalline copper[J].Applied physics letters,2005(9):1904-1-1904-3-0.
[16] I. A. Ovid'ko;A. G. Sheinerman .Special strain hardening mechanism and nanocrack generation in nanocrystalline materials[J].Applied physics letters,2007(17):171927-1-171927-3-0.
[17] A. Hasnaoui;H. Van Swygenhoven;P. M. Derlet .Dimples on Nanocrystalline Fracture Surfaces As Evidence for Shear Plane Formation[J].Science,2003(5625):1550-1552.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%