采用Monte-Carlo方法模拟了时效初期Al-4.0Cu-0.3Mg-(0.4Ag)-(0.2Sc)合金的原子分布.研究结果表明:在时效过程中含微量钪的Al-Cu-Mg合金中镁原子逐步向钪原子周围偏聚,而铜原子并没有向钪原子周围聚集的倾向,时效初期出现了大量的Mg/Sc原子团簇及Mg/Sc/空位复合体;微量钪的存在促进了镁原子团簇化,但抑制了铜原子的团簇化;而含微量银的合金中镁原子向银原子周围偏聚的倾向比铜原子大得多,时效初期出现了大量的Ag/Mg原子团;"Sc/空位"机制是微量钪影响Al-Cu-Mg合金时效初期原子分布与形态的关键所在.
参考文献
[1] | Polmear I J .Control of precipitation processes and properties in aged aluminium alloys by microalloying[J].Materials Forum,1999,23:117-135. |
[2] | Ringer S P;Raviprasad K .Developments in age-hardenable aluminium alloys and rational design of microstructure[J].Materials Forum,2000,24:59-94. |
[3] | Polmear I J .Role of trace elements in aged Aluminium alloys[J].Materials Science Forum,1987,13-14:195-214. |
[4] | S.P.Ringer;K.Hono .Microstructural evolution and age hardening in aluminium alloys: atom probe field-ion microscopy and transmission electron microscopy studies[J].Materials Characterization,2000(1/2):101-131. |
[5] | Howe J M .Analytical transmission electron microscopy analysis of Ag and Mg segregation to {111}θ precipitate plates in an Al-Cu-Mg-Ag alloy[J].Philosophical Magazine Letters,1994,70(03):111-120. |
[6] | A. K. Mukhopadhyay .Nucleation of Ω Phase in an Al-Cu-Mg Alloy Containing Small Additions of Ag[J].Materials transactions,1997(5):478-482. |
[7] | Zhiguo Chen;Ziqiao Zheng .Microstructural evolution and ageing behaviour of the low Cu:Mg ratio Al–Cu–Mg alloys containing scandium and lithium[J].Scripta materialia,2004(7):1067-1071. |
[8] | Hirosawa S;Sato T;Yokota J .Comparison between resisivity changes and Monte-Carlo simulation for GP zone formation in Al-Cu base ternary alloys[J].Materials Transactions,1998,39(01):139-146. |
[9] | S. Hirosawa;T. Sato .CLASSIFICATION OF THE ROLE OF MICROALLOYING ELEMENTS IN PHASE DECOMPOSITION OF Al BASED ALLOYS[J].Acta materialia,2000(8):1797-1806. |
[10] | Peter Binkele;Siegfried Schmauder .An atomistic Monte Carlo simulation of precipitation in a binary system[J].Zeitschrift fur Metallkunde,2003(8):858-863. |
[11] | JINHUA GAO;R. G. THOMPSON .REAL TIME-TEMPERATURE MODELS FOR MONTE CARLO SIMULATIONS OF NORMAL GRAIN GROWTH[J].Acta materialia,1996(11):4565-4570. |
[12] | Saito Y;Harada H .The Monte-Carlo simulation of ordering kinetics in Ni-base superalloys[J].Materials Science and Engineering A,1997,223(1-2):1-9. |
[13] | R.PODURI;L.-Q.CHEN .COMPUTER SIMULATION OF THE KINETICS OF ORDER-DISORDER AND PHASE SEPARATION DURING PRECIPITATION OF δ' (Al3Li) IN Al-Li ALLOYS[J].Acta materialia,1997(1):245-255. |
[14] | Deurinck P.;Creemers C. .Monte Carlo simulation of Cu segregation and ordering at the (110) surface of Cu75Pd25[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,1998(1):62-77. |
[15] | Kittel C.Introduction to Solid State Physics[M].New York: John Wiley and Sons Inc,1976:57-142. |
[16] | Landolt B.Numerical Data and Functional Relationship in Science and Technology(Vol. 25): Atomic Defects in Metals[M].Berlin.. Springer-Verlag,1991:35-117. |
[17] | Landolt B.Numerical Data and Functional Relationship in Science and Technology ( Vol. 5 ): Phase Equilibra, Crystallographic and Thermodynamic Data of Binary[M].Berlin:Springer-Verlag,1991:26-129. |
[18] | Sanchez J M;Barefoot J R;Jarrett R N et al.Modeling of γ/γ' phase equilibrium in the nickel-aluminum system[J].Acta Materialia,1984,32(09):1519-1525. |
[19] | Doyama M;Koehler J S .The relation between the formation energy of a vacancy and the nearest neighbor interactions in pure metals and liquid metals[J].Acta Materialia,1976,24(09):871-879. |
[20] | Suh I S;Park J K .Influence of the elastic strain energy on the nucleation of Ω phase in Al-Cu-Mg-(Ag)alloys[J].Scripta Metallurgica et Materialia,1995,33:205-211. |
[21] | Murayama M;Hono K .Three dimensional atom probe analysis of precipitate clustering in an Al-CuMg-Ag alloy[J].Scripta Materialia,1998,38(08):1315-1319. |
[22] | S. P. RINGER;K. HONO;I. J. POLMEAR .NUCLEATION OF PRECIPITATES IN AGED Al-Cu-Mg-(Ag) ALLOYS WITH HIGH Cu:Mg RATIOS[J].Acta materialia,1996(5):1883-1898. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%