{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"综述了目前关于计算机CPU散热的3种液体冷却系统(大器件液冷循环系统、热管冷却系统和液体喷射冷却系统)及所采用的多种冷却液(水、液态金属和纳米流体)的研究进展;比较了3种液冷器件和3种冷却液的优缺点,指出热管冷却系统和纳米流体更加具有竞争优势;最后展望了CPU冷却器件和冷却液的发展前景.","authors":[{"authorName":"石育佳","id":"c03ce279-e1ad-4472-8cd5-c29cb43ef92d","originalAuthorName":"石育佳"},{"authorName":"王秀峰","id":"c72d3736-cf50-4ed9-a3c4-f5deaacb6b76","originalAuthorName":"王秀峰"},{"authorName":"王彦青","id":"c32a7455-168f-4fec-a96d-1e9434f1a319","originalAuthorName":"王彦青"},{"authorName":"赵童刚","id":"eac44073-edb7-400e-b7fe-650d03adc4ca","originalAuthorName":"赵童刚"},{"authorName":"门永","id":"f0638e1e-49a7-42c2-b2d7-66be43480ead","originalAuthorName":"门永"},{"authorName":"康文杰","id":"3ad84f78-4538-4a0d-bc4e-94e89a386126","originalAuthorName":"康文杰"}],"doi":"","fpage":"56","id":"fa9f0ad3-e6ba-4b47-8494-b927df39104c","issue":"21","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"2d4e3f31-e7f9-4538-82f2-a3b80e3bcc7e","keyword":"CPU散热器","originalKeyword":"CPU散热器"},{"id":"287fb2ca-f287-4daa-97c1-c14a757c8bf5","keyword":"芯片制冷","originalKeyword":"芯片制冷"},{"id":"ad9338f5-ca1a-4adc-a437-0da8ce964262","keyword":"液体冷却","originalKeyword":"液体冷却"},{"id":"75f00eb1-0568-470f-9a84-a05db91e6d16","keyword":"冷却液","originalKeyword":"冷却液"}],"language":"zh","publisherId":"cldb201221012","title":"CPU液体冷却器件及冷却液材料研究进展","volume":"26","year":"2012"},{"abstractinfo":"从乙二醇型防冻冷却液的配方类型着手,对各配方的优缺点进行了探讨,并就国内防冻冷却液的现状做了详细的阐述.按照缓蚀剂组成将防冻冷却液分为无机盐为主的常规防冻冷却液类型(硅酸盐、硼砂、磷酸盐、钼酸盐)和以有机酸为主的防冻冷却液类型(复合了无机盐的有机酸配方、全有机酸配方).","authors":[{"authorName":"陶佃彬","id":"504613ec-4080-4937-addc-d1bc4bc8c049","originalAuthorName":"陶佃彬"},{"authorName":"童秀凤","id":"d139deec-dc01-4e18-b42f-1e8b5f0bf631","originalAuthorName":"童秀凤"},{"authorName":"曹云龙","id":"114ab213-be98-4738-b93a-9184ca5a9bcc","originalAuthorName":"曹云龙"}],"doi":"10.3969/j.issn.1001-1560.2007.06.018","fpage":"49","id":"755ac4db-5734-4cdb-80df-781ef20d5dcc","issue":"6","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"da6818c4-6bc9-49f3-b647-96126374003e","keyword":"防冻冷却液","originalKeyword":"防冻冷却液"},{"id":"0a8a2c80-4e86-4dba-ae12-0bb7c20c818a","keyword":"乙二醇型","originalKeyword":"乙二醇型"},{"id":"da672508-9ade-4133-a486-24a522ff8138","keyword":"配方","originalKeyword":"配方"},{"id":"5817261c-755d-482f-9c62-951f3195c0f6","keyword":"丙二醇型","originalKeyword":"丙二醇型"}],"language":"zh","publisherId":"clbh200706018","title":"汽车防冻冷却液的研究进展","volume":"40","year":"2007"},{"abstractinfo":"通过试验,从氧化膜质量、机械加工过程用到的辅助加工液、基体材料、环境湿度等几个环节,对铸造铝合金阳极氧化膜在机械加工后掉色的多种可能因素进行了工艺验证,并根据试验结果,对从事机械加工专业的人员在加工过程中如何保护产品零部件阳极氧化膜提出积极建议,且取得良好效果.","authors":[{"authorName":"胡焰","id":"7e3091cb-25b1-47c3-8f83-56239b1f55f0","originalAuthorName":"胡焰"}],"doi":"10.3969/j.issn.1001-3849.2008.10.011","fpage":"31","id":"4381478d-93a3-47af-8cef-82868a36b6be","issue":"10","journal":{"abbrevTitle":"DDYJS","coverImgSrc":"journal/img/cover/DDYJS.jpg","id":"20","issnPpub":"1001-3849","publisherId":"DDYJS","title":"电镀与精饰 "},"keywords":[{"id":"de91d6c0-a9a4-4f03-beee-01e631d0835f","keyword":"铸造铝合金","originalKeyword":"铸造铝合金"},{"id":"1c14b345-2346-4c9d-b6e6-2b79b444810e","keyword":"阳极氧化膜","originalKeyword":"阳极氧化膜"},{"id":"04071f6d-4d56-4ce8-9016-0b7bb8642078","keyword":"掉色","originalKeyword":"掉色"},{"id":"9b325258-107a-4bb3-bcdb-e37429819c4a","keyword":"冷却液","originalKeyword":"冷却液"}],"language":"zh","publisherId":"ddjs200810011","title":"铸造铝合金阳极氧化着色膜掉色缺陷分析","volume":"30","year":"2008"},{"abstractinfo":"丙二醇替代乙二醇用作防冻冷却液具有低毒、环保、防腐蚀性能更佳等优点,目前,国内对其研究尚不够深入。研制了长效直接使用型1,2-丙二醇防冻冷却液的防腐蚀添加剂配方,讨论了缓蚀剂的选择与复配关系,确定了添加剂A、癸二酸、琥珀酸等主要添加剂的最佳使用量和配比,并进行了性能测试。结果表明,性能较优的冷却液配方为:钼酸钠、硅酸钠组合物0.17%,苯并三氮唑0.12%,安息香酸钠0.7%,1,2-丙二醇30.00%,添加剂A1.0%-1.2%,癸二酸0.2%,琥珀酸0.1%。对6种金属材质的恒温静态挂片腐蚀试验和长效耐久腐蚀试验表明,该类冷却液对多种金属具有协同防腐蚀效果和5年以上长效防护性能,且低毒、环保,适用于车船等设备。","authors":[{"authorName":"陶佃彬","id":"5e2fb4dd-dad0-4976-9805-08a655cc7f81","originalAuthorName":"陶佃彬"},{"authorName":"林彦军","id":"b3f1ef9d-776d-4e17-82b1-ddae71f94143","originalAuthorName":"林彦军"},{"authorName":"施丽丽","id":"4570dc24-c0d6-41a9-9299-b2208cc49b60","originalAuthorName":"施丽丽"},{"authorName":"邹密","id":"0b73c7bd-8d88-43ce-a2f2-9141be6bc64c","originalAuthorName":"邹密"}],"doi":"","fpage":"30","id":"90c63180-6ef2-40ee-b888-e0fc5b889cb0","issue":"4","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"7ac8da0a-1680-4e40-83d4-eda26aa4bca6","keyword":"防冻冷却液","originalKeyword":"防冻冷却液"},{"id":"3789eb85-f11d-4209-9931-ebb8be651268","keyword":"长效","originalKeyword":"长效"},{"id":"37e5f263-3cac-4896-b965-45580ee0292f","keyword":"1","originalKeyword":"1"},{"id":"7f0a8901-bf51-47e1-9e76-254c94197f5d","keyword":"2-丙二醇型防冻冷却液","originalKeyword":"2-丙二醇型防冻冷却液"},{"id":"d6e5ecd8-9465-476e-ab73-e116e75101ee","keyword":"缓蚀剂","originalKeyword":"缓蚀剂"},{"id":"85cc5508-2e9b-4e75-a272-5c1f2d8126d4","keyword":"癸二酸","originalKeyword":"癸二酸"},{"id":"c006fd63-a3da-4a6b-af93-44429f536aa3","keyword":"琥珀酸","originalKeyword":"琥珀酸"}],"language":"zh","publisherId":"clbh201204012","title":"长效直接使用型1,2-丙二醇防冻冷却液的研制","volume":"45","year":"2012"},{"abstractinfo":"目前,就铝硅合金在发动机冷却液中的腐蚀行为的研究未见深入报道。为此,利用失重、电化学阻抗和极化曲线等方法研究了AA6061铝合金在乙二醇-腐蚀水模拟冷却液体系中的腐蚀行为。结果表明,AA6061铝合金在乙二醇-腐蚀水溶液中存在2个腐蚀速率区间,初期腐蚀速率较低,随后腐蚀速率较高;在腐蚀反应开始时,乙二醇的吸附抑制了AA6061铝合金的表面腐蚀;但是随着浸泡时间的延长,乙二醇加速了AA6061合金的腐蚀。乙二醇高温氧化的副产物乙醇酸提高了AA6061合金在乙二醇冷却液中的腐蚀敏感性。","authors":[{"authorName":"金星","id":"ba7b15d4-e674-4ab8-8f52-b7ea3d078732","originalAuthorName":"金星"},{"authorName":"饶楚仪","id":"5c65c46c-274e-48ca-8a17-e999ef9c9695","originalAuthorName":"饶楚仪"},{"authorName":"高立新","id":"36528d75-95ab-498d-97a1-7904911a094f","originalAuthorName":"高立新"},{"authorName":"张大全","id":"b642c870-7b66-422f-b800-4553f43cc3b1","originalAuthorName":"张大全"}],"doi":"","fpage":"15","id":"6b806f6d-8551-4044-b1e7-a58c894c741d","issue":"9","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"3a93b32b-0105-415a-abf8-667269a3ab4f","keyword":"AA6061铝合金","originalKeyword":"AA6061铝合金"},{"id":"59465fd8-edb9-459c-9cd4-2f3adbc1f496","keyword":"腐蚀行为","originalKeyword":"腐蚀行为"},{"id":"00126233-23b5-4d16-8c53-d565505e7dcc","keyword":"乙二醇","originalKeyword":"乙二醇"},{"id":"f7ca9cd3-5f49-403a-ba27-a1188bc46471","keyword":"腐蚀水","originalKeyword":"腐蚀水"},{"id":"3560e416-870c-4a3c-b9b0-3f0a1f337f56","keyword":"发动机冷却液","originalKeyword":"发动机冷却液"}],"language":"zh","publisherId":"clbh201109007","title":"铝合金在乙二醇-水模拟冷却液中的腐蚀行为","volume":"44","year":"2011"},{"abstractinfo":"采用电化学阻抗谱(EIS)、极化曲线和微观表面形貌分析研究不同浓度的海藻酸钠对AZ31镁合金在模拟汽车冷却液中的缓蚀作用。结果表明:0.005g/L的海藻酸钠能够明显抑制AZ31镁合金在模拟汽车冷却液中的腐蚀,但随着浓度的继续增加海藻酸钠的缓蚀能力有所下降。海藻酸钠是一种抑制镁合金阴极析氢反应的阴极型缓蚀剂。","authors":[{"authorName":"饶楚仪","id":"40032dd1-838d-4195-9705-7e82bc1bf663","originalAuthorName":"饶楚仪"},{"authorName":"张大全","id":"e9d15597-cc7b-49c5-a597-0e39c1d2d7ee","originalAuthorName":"张大全"},{"authorName":"金星","id":"4d8a404b-df91-4f2a-95a8-a5c2a85ff786","originalAuthorName":"金星"},{"authorName":"高立新","id":"cfe6ee3b-7b2b-4750-b774-0b532cd3e554","originalAuthorName":"高立新"},{"authorName":"郭兴伍","id":"8dad4234-4755-44ed-b4e0-d7fcbf5f444a","originalAuthorName":"郭兴伍"}],"doi":"","fpage":"936","id":"80361c8f-ffb8-4c62-85c0-3bba3c775e5e","issue":"12","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"dd589f41-3078-43ed-bdb5-caa34b5002d7","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"5ac1e23f-5060-4709-b4c8-4a31357f672a","keyword":"海藻酸钠","originalKeyword":"海藻酸钠"},{"id":"9c508869-5a81-478f-abb7-c1901da05500","keyword":"缓蚀作用","originalKeyword":"缓蚀作用"},{"id":"55895f3c-9596-4e1b-b289-d67eecdef7b4","keyword":"汽车冷却液","originalKeyword":"汽车冷却液"}],"language":"zh","publisherId":"fsyfh201112002","title":"模拟汽车冷却液中海藻酸钠对AZ31镁合金的缓蚀作用","volume":"32","year":"2011"},{"abstractinfo":"通过失重试验、电化学测试、XPS测试等研究了微量氟化钾对AZ91D、NZK和AM-SC1三种镁合金在商用CALTEX冷却液中腐蚀行为的影响.结果表明:随着CALTEX冷却.液中氟化钾含量的增大,三种合金在其中的腐蚀速率随之减小,且氟化钾对AM-SC1和NZK合金腐蚀的抑制作用比较显著;氟化钾对合金的缓蚀作用是由于氟离子与镁反应,在合金表面生成难溶的MgF2膜,阻止了合金的进一步腐蚀.","authors":[{"authorName":"袁鹏","id":"29f9c1ad-d0d2-4fbe-bbe4-3468dc4ae6fd","originalAuthorName":"袁鹏"},{"authorName":"郭兴伍","id":"7a5cf76a-834f-48ab-91f4-5c2a7a3c08fa","originalAuthorName":"郭兴伍"},{"authorName":"彭立明","id":"9b96c8ed-fc95-4722-bbef-ceb885d35171","originalAuthorName":"彭立明"},{"authorName":"付彭怀","id":"97dd2d56-13dc-4b43-b547-a7568b67803c","originalAuthorName":"付彭怀"},{"authorName":"龚佳","id":"0d7ee175-f2c6-4def-b65d-3d23af6eaad6","originalAuthorName":"龚佳"},{"authorName":"吴国华","id":"12bc228c-4c3d-4140-a408-cdd14c5364ab","originalAuthorName":"吴国华"}],"doi":"","fpage":"58","id":"100fbb88-3cc7-4265-9a42-57d4f7f66acf","issue":"4","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"52971943-4cae-4d47-aa02-8115179fff0a","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"7ea1f30d-d108-4287-81e8-ee28b31b78b6","keyword":"CALTEX冷却液","originalKeyword":"CALTEX冷却液"},{"id":"8c6d1839-c8fb-4acd-83bc-feb9f0cf40c3","keyword":"耐蚀性能","originalKeyword":"耐蚀性能"},{"id":"1240bd59-e05f-445c-89b3-b2a6350c7b86","keyword":"氟化钾","originalKeyword":"氟化钾"}],"language":"zh","publisherId":"jxgccl201304015","title":"微量氟化钾对镁合金在商用冷却液中腐蚀行为的影响","volume":"37","year":"2013"},{"abstractinfo":"近来AZ91 D镁合金被用到汽车发动机中,而以往对其在冷却液中腐蚀行为的报道较少.采用浸泡和电化学测试方法,研究了汽车发动机用材AZ91D镁合金在不同体积分数乙二醇模拟冷却液中的腐蚀行为及腐蚀机理.结果表明:随着乙二醇体积分数的增加,AZ91D镁合金的腐蚀速率呈现先降低后增加的趋势,在乙二醇体积分数为80%时腐蚀速率最小,合金的腐蚀速率随着腐蚀时间的延长呈降低趋势;AZ91D镁合金在乙二醇-水溶液中会形成具有自愈合作用的MgO/Mg (OH)2腐蚀产物膜,可以对合金表面起到良好的保护作用;AZ91D合金在乙二醇-水溶液中以析氢腐蚀为主,而在纯乙二醇中以Mg和乙二醇的化学腐蚀为主.","authors":[{"authorName":"张钱斌","id":"c57f8b50-bbd2-433a-86a7-565910524823","originalAuthorName":"张钱斌"},{"authorName":"周添红","id":"d90d7efc-9452-412b-90ed-e07eaf85a62f","originalAuthorName":"周添红"}],"doi":"","fpage":"55","id":"344b41a6-224d-4dac-ad25-4368eefd563d","issue":"7","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"efbfe4ee-8285-4d16-9e2f-b480811550f5","keyword":"AZ91D镁合金","originalKeyword":"AZ91D镁合金"},{"id":"2ead7ae3-abcd-42b6-8374-d0083731083d","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"ab38f7aa-3db2-41db-aa6d-6ee64517f82a","keyword":"汽车发动机冷却液","originalKeyword":"汽车发动机冷却液"},{"id":"70214db8-b0f1-4988-85ee-9850de67ff4f","keyword":"电化学行为","originalKeyword":"电化学行为"}],"language":"zh","publisherId":"clbh201507015","title":"汽车发动机冷却液中AZ91D镁合金的腐蚀行为","volume":"48","year":"2015"},{"abstractinfo":"采用电化学试验、表面形貌观察、腐蚀产物分析等方法研究了磷酸氢二钠(DSP)和D-葡糖酸钠(GS)两种物质复配后对镁合金在50%(体积分数,下同)乙二醇型冷却液中的缓蚀作用.结果表明:DSP对AZ91D镁合金在50%乙二醇冷却液中是一种混合抑制型缓蚀剂,GS对AZ91D镁合金在50%乙二醇冷却液中没有缓蚀作用;DSP和GS之间存在缓蚀协同效应,复配后的缓蚀剂是一种以抑制阳极过程为主的混合型缓蚀剂;GS的添加量存在极值,而DSP和GS的质量浓度比达到4∶1时,即复配缓蚀剂E,其缓蚀率趋于稳定;随着复配缓蚀剂E加入量的增大,缓蚀率增大,其加入量为2.5 g/L时,缓蚀率高达90%以上;复配缓蚀剂E对AZ91D镁合金起到缓蚀作用主要表现为形成了MgHPO4沉淀物,通过GS络合在镁合金表面,从而抑制了镁合金在乙二醇冷却液中的腐蚀.","authors":[{"authorName":"杨俊","id":"f8ab683b-9ca6-43e8-a287-5c9bde3398c7","originalAuthorName":"杨俊"},{"authorName":"龚敏","id":"d49e7348-2041-4c09-bba2-b10ea01f55f7","originalAuthorName":"龚敏"},{"authorName":"郑兴文","id":"dd577b8c-b173-462c-8b52-38f7bf0242f4","originalAuthorName":"郑兴文"},{"authorName":"张龄丹","id":"a629a1a7-8073-4a1a-8096-9676906b30da","originalAuthorName":"张龄丹"},{"authorName":"李利","id":"c10a9159-2310-4336-b6ce-b089e0b6235a","originalAuthorName":"李利"}],"doi":"10.11973/fsyfh-201703008","fpage":"193","id":"f8885340-01c7-4d44-8980-e9ff0c80d141","issue":"3","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"66aabbce-77f0-4ee3-b2ba-d805da7a7e73","keyword":"AZ91D镁合金","originalKeyword":"AZ91D镁合金"},{"id":"fa4ac138-c070-4973-bbe9-ca4cc37877e5","keyword":"乙二醇","originalKeyword":"乙二醇"},{"id":"ff9284fc-139f-4d8b-8eee-046b87ad6989","keyword":"缓蚀剂","originalKeyword":"缓蚀剂"},{"id":"28e044cf-0364-42c4-be59-a4689c32f8c2","keyword":"磷酸氢二钠","originalKeyword":"磷酸氢二钠"},{"id":"91529510-d72a-49bd-b78c-4604080842aa","keyword":"D-葡糖酸钠","originalKeyword":"D-葡糖酸钠"}],"language":"zh","publisherId":"fsyfh201703008","title":"复配缓蚀剂在50%乙二醇冷却液中对AZ91D镁合金的缓蚀作用","volume":"38","year":"2017"},{"abstractinfo":"通过极化曲线、电化学阻抗谱等电化学方法研究了Na3PO4对AM60镁合金在模拟汽车冷却液中的缓蚀性能,考察了缓蚀剂浓度、腐蚀介质温度和浸泡时间对缓蚀效率的影响,并探讨了缓蚀机理.结果表明:当Na3PO4的浓度为0.6 mmol/L时,AM60镁合金的缓蚀效率高达84.58%,长时间浸泡和高温时缓蚀效果不明显,更适合于在汽车模拟冷却液中对AM60镁合金进行短时间的缓蚀保护.","authors":[{"authorName":"文家新","id":"087d2b35-0c1b-49a5-9bf0-c94f342c67b8","originalAuthorName":"文家新"},{"authorName":"许雯婷","id":"436c9d15-44de-4ddd-8812-b0b52612e6de","originalAuthorName":"许雯婷"},{"authorName":"何建新","id":"f0c9f1bf-0b83-410e-ba13-ae142c0b8595","originalAuthorName":"何建新"},{"authorName":"王莎","id":"526c42ae-0a75-444f-acbb-d94981e2016d","originalAuthorName":"王莎"}],"doi":"10.11903/1002.6495.2015.401","fpage":"489","id":"9a5c06fa-5d4e-4221-b836-1001daee89ff","issue":"5","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"e9413cc0-59be-419a-9b24-582cccaacedc","keyword":"AM60镁合金","originalKeyword":"AM60镁合金"},{"id":"6b84a2e4-362e-4424-bd6a-53d7dd4831e6","keyword":"模拟汽车冷却液","originalKeyword":"模拟汽车冷却液"},{"id":"de7f9c1d-6bb2-4301-9e24-4f6d67449307","keyword":"Na3PO4","originalKeyword":"Na3PO4"},{"id":"c417ff15-4651-4d18-a20a-ea8b3afb22b5","keyword":"缓蚀作用","originalKeyword":"缓蚀作用"}],"language":"zh","publisherId":"fskxyfhjs201605016","title":"Na3PO4对模拟汽车冷却液中AM60镁合金的缓蚀作用","volume":"28","year":"2016"}],"totalpage":2440,"totalrecord":24399}