雷振坤
,
潘学民
,
亢一澜
,
仇巍
,
李秋
,
彭博
材料工程
doi:10.3969/j.issn.1001-4381.2008.z1.024
通过比较多壁碳纳米管在不同溶剂中的分散性,优选出(N,N-DMF)表面活性剂和甲醇的混合液,来超声分散碳纳米管,制备成碳纳米管增强的环氧树脂基聚合物.电学和摩擦性能测试表明,随碳纳米管含量的增加,复合材料的体积电阻率呈几何量级的降低,摩擦系数近线性降低.常温下力学性能测试表明,随着碳纳米管含量的增加,其弹性模量先增后降.在50℃时,对于碳纳米管含量≤1%(质量分数,下同)的复合材料,经历了可逆的粘弹性阶段后进入了塑性变形,且温度对复合材料的弹性模量和拉伸强度影响较大;而对于碳纳米管含量>1%的复合材料,其力学性能反而发生退化.
关键词:
多壁碳纳米管
,
分散
,
电阻率
,
力学行为
,
环氧树脂纳米复合材料
雷振坤
,
仇巍
,
李秋
,
亢一澜
,
潘学民
高分子材料科学与工程
用二甲基甲酰胺表面活性剂来超声分散多壁碳纳米管,制备成碳纳米管增强的环氧树脂基聚合物.常温下力学性能测试表明,随着碳纳米管含量的增加,其弹性模量先增后降.在50 ℃时,对于碳纳米管含量≤1%(质量分数)的复合材料,经历了可逆的粘弹性阶段后进入塑性变形,且温度对复合材料的弹性模量和拉伸强度影响较大;而对于碳纳米管含量>1%的复合材料,其力学性能反而发生退化.
关键词:
多壁碳纳米管/环氧树脂纳米复合材料
,
分散
,
力学性质
金属学报
第1期1 6 12 17 21 25 3138科49 53 60 64 6871B B B B B B B B B B B B B BB物料加热过程的最优准则及优化理论的研究················································……李宗瑞陆钟武Fe(III卜HZs仇一NaZS仇水溶液体系的离子平衡····,·····································……伍志春于淑秋LIF一KCI熔盐溶液的径向分布函数··....
关键词:
工程热物理学报
根据《吴仲华奖励基金章程》(吴奖[2008]01号),经各高等院校、中国工程热物理学会和中国科学院工程热物理研究所认真评选和推荐,吴仲华奖励基金理事会评审并确定授予青年学者戴巍、罗坤、唐桂华“吴仲华优秀青年学者奖”,授予程雪涛等10位同学“吴仲华优秀学生奖”。
关键词:
基金
,
奖励
,
评选
,
获奖者
,
中国科学院
,
青年学者
,
物理研究所
,
高等院校
腐蚀学报(英文)
在会上交流已公开发表文章题录区域碳钢土壤腐蚀数据模式识别研究李洪锡,张淑泉,银耀德,高英发表于:腐蚀科学与防护技术,1993,5(l):70混凝土土壤腐蚀快速试验研究马孝轩,陈从庆,仇新刚发表于:腐蚀科学与防护jkk,1995,7():84模糊聚类分析在土壤腐蚀性评价中的应用来光铃,曹楚南,林海潮发表于:中国腐蚀与防护学报,1993,13(4):303我国典型地区大气腐蚀性的综合评价汪轩义,屈祖玉,李长荣发表于:腐蚀科学与防护技术,1995,7(4)钢铁材?...
关键词:
金属学报(英文版)
桑危郑牛樱裕桑牵粒裕桑希巍。希啤。龋伲模遥希牵牛巍。桑危模眨茫牛摹。模眨茫裕桑蹋拧。拢遥桑裕裕蹋拧。裕遥粒危樱桑裕桑希巍。桑巍。罚保罚怠。粒蹋眨停桑危眨汀。粒蹋蹋希?##2##3##4##5INVESTIGATIONOFHYDROGENINDUCEDDUCTILEBRITTLETRANSITIONIN7175ALUMINUMALLOY$R.G.Seng:B.JZhong,MG.ZengandP.Geng(DepartmentofMaterialsScierce,ScienceCollege,NorthearsternUniveisity,Shenyang110006,ChinaMaruscriptreceived4September1995inrevisedform20April1996)Abstrac:Effectsofhydrogenonthemechanicalpropertiesofdifferentlyaged7175aluminumalloyswereinvestigatedbyusingcathodicH-permeation,slowstrainratetensionandsoon.Theresultsindicatethatboththeyieldstressandthepercentagereductionofareadecreasewithincreasinghydrogenchargingtime,andthedegreeofreductiondecreasesasagingtimeincreasesforthesamehydrogenchargingtime.Keywords:hydrogeninducedductile-brittletransition,7175aluminumalloy,mechanicalproperty,cathodicH-permeation1.IntroductionForalongtimehydrogenembrittlementproblemwasthoughttobeabsentinhighstrengthaluminiumalloybecausethesolutiondegreeofhydrogeninaluminumatcommontemperatureandpressureisverysmall.However,hydrogenembrittlementphenomenonwasfoundinaluminumalloyduringtheinvestigationofstresscorrosionandcorrosionfatigue[1-5].Therehavebeenonlyafewreportsofhydrogeninducedsofteningandhardening.Inthispaper,theeffectsofhydrogenonmechanicalpropertiesof7175aluminumalloywereinvestigatedbyusingcathodicalchargingwithhydrogenandslowtensiontests.2.ExperimentalProcedureTheexperimentalmaterialwas7175aluminumalloyforgingintheformofa43mminthicknessandwithcomposition(wt%).5.41Zn,2.54Mg.1.49Cu,0.22Cr,0.1Mn.0.1Ti,0.16Fe.0.11Si,balancedbyA1.Alloyplateof1.5mminthicknesswasobtainedbyhot(465℃)andtoldrollingto83%reductioninthickness.Thelongaxisofhydrogenchargedspecimensisalongtherollingdirection.Allspecimensweresolidsolutionedat480℃for70min,followedtyimmediatequenchinginwaterandthenagedat140℃for6h(A),16h(B)and98h(C).Thetreatmentof6hiscorrespondingtotheunderagedstate.16hthefirstpeak-agedstateand98hthesecondpeak-agedstate.Thespecimenswerepolishedsuccessivelyusingemerypaperbeforehydrogencharging.Thetensilespecimenswerecathodicallychargedina2NH_2SO_4solutionwithasmallamountofAs_2O_3forpromotinghydrogenabsorption,andwithacurrentdensityof20±1mA/cm ̄2atroomtemperature.ThehydrogencontentanalysiswascarriedoutonanLT-1Amodelionmassmicroprobeafterthesputteringdepthreached8nm.Theioncurrentsofhydrogenandaluminuminvariousagedstateswererecordedunderthesamecondition.ThetensiletestswereperformedonanAG-10TAmodeltestmachinewhichwascontrolledbycomputer.3.ExperimentalResultsTheratioofioncurrentstrengthofhydrogentoaluminumisrelatedtohydrogenconcentrationinhydrogenchargedspecimen.TheresultswereshowninTable1Thehydrogencontentincreaseswiththeincreaseincharingtime.Ofthethreeagedstates,theunderagedspecimenhasthehighesthydrogencontent.Theratioofyieldstrengthofhydrogenchargedandunchargedspecimenschangeswithhydrogenchargingtime,asshowninFig.1Itcanbeseenthattheyieldstrengthofhydrogenchargedspecimendecreasewithincreasinghydrogenchargingtime.Atthesamechargingtime,theyieldstressdecreasestheleastinthesecondpeak-agedstate,anddecreasesthemostintheunderagedstate.Itindicatesthattheunderagedspecimenismostsensitivetohydrogeninducedsoftening,whichisconsistentwiththeresultsofanotherhighstrengthaluminumalloy[6].TherelativechangesoftheradioofreductionofareawithhydrogenchargingtimearesummarizedinFig.2,whereΨ ̄0andΨ ̄Harethepercentagereductionofareaofthesamplewithoutandwithhydrogenchargingrespectively.Theradioofreductionofareareduceswhenhydrogenchargingtimeincreases,andthedecreasingdegreeofreductionofareaincreaseswithincreasingagingtime,ie,,theunderagedstateisthemostsensitivetohydrogenembrittlement.4.DiscussionItisknownfromtheresultsabovethatcathodicalchargingwithhydrogenleadstotheobviousdecreaseinthetensilestrengthandplasticityThisisbecausealargeamountofsolidsolutionhydrogenentersthespecimenintheprocessofhydrogenchargingSolidsolutionhydrogenisliabletoenterthecentreofdislocationundertheactionofdislocationtrap,henceraisingthemovabilityofdislocation.Thereforethedislocationsinhydrogenchargedspecimenmoveeasierthaninunchargedspecimen.soresultinginthereductionofyieldstrength[7].Whendislocationstartstomove,thecrystallatticeresistance(P-Nforce)whichitmustovercomeisgivenby:whereμismodulusofshear,visPoissonratio,aisspanofslipplane,bisatomspanofslipdirection.Moreover.theotherresistanceofdislocationmotionmayarisefromtheelasticinteractionofdislocation,theactionwithtreedislocationandetc.,itcanbeexpressedasfollows:whereαisconstant,XisdislocationspanSotheresistanceofdislocationmotioncanbewrittenasfollows:Becausehydrogenatomsreducetheatombondingstrengthafterhydrogencharging,shearmodulusμdecreasesandresultsinthereductionoff,therebytheyieldstressdecreases.Asthecentreofdislocationistheseriousdistortionzoneoflattice.thestresscanberelaxedafterhydrogenatomstuffing,andthesystemenergydecreases.Thusthecentreofdislocationisastrongtrapofhydrogen[8].Therefore,amovabledislocationcaptureshydrogenandmigratestograinboundaries.phaseboundariesorsurfaceofthespecimen,promotingthecrackiesformationandgrowth,thuscausingthelossofplasticity.Sincethelocalenrichmentofhydrogenisrealizedbydislocationtransporting(inthestageofdeformation),thelargerthereductionofyieldstress.theearlierarehydrogenatomstransportedtotheplaceofenrichment.Inaddition,thedamageofatombondingstrengthinducedbyhydrogenmakesthefracturestressdecrease[9]:whereCHishydrogenconcentration.σ_thisfracturestrengthbeforehydrogenchargingandisfracturestrengthafterhydrogencharging.Eq.(4)showsthatthematerialsmaybefracturedatalowerstraini.e.,brittlefractureoccurs.5.Conclusions(1)Hydrogencontentofdifferentlyagedspecimensincreaseswithincreasinghydrogenchargingtimethecapabilityofthealloytoabsorbhydrogeninunderagedstateisthestrongest.(2)Theyieldstressaswellasthepercentagereductionofareaof7175aluminumalloydecreaseashydrogenchargingtimeincreasesundervariousagedstates.(3)Underagedstateismostsensitivetohydrogeninducedsofteningandhardening.(4)Anexplanationwasofferedforthephenomenonofhydrogeninducedsofteninginthestageofdeformation,andhardeninginthestageoffracture.REFERENCES||1G.KKock,Corrosion35(1979)73.2M.K.TsengandH.LMarcus,Scr.Metall.15(1981)427.3PSFao.M.GaoandR.P.Wei,Scr.Metall.19(1985)265.4R.G.SongandM.K.TsengJ.NortheasternUniversity15(1994)5(inChinese).5R.K.Viswanadham,T.S.sunandJ.A.S.Green,Metall.Trans.11A(1980)85.6J.Liu,M.KTsengandB.R.Liu.NonferrousMiningandMetallrgy5(1989)33(inChinese).7LChen,WXChen,ZHLiuandZ.Q.Hu,InFrocofthe1stNationalConfonAl-LiAlloys(Sheryang.China,1991)p.328(inChinese).8Z.HLiuL.ChenW.XChenY.X.ShaoandZ.Q.Hu,InProc.ofthe1stNationalConfonAl-LiAlloys(Shenyang,China,1991)p.334(inChinese).9R.A.OrianiandF.H.Josephic,ActaMetall.22(1974)1065.##61G.KKock,Corrosion35(1979)73.2M.K.TsengandH.LMarcus,Scr.Metall.15(1981)427.3PSFao.M.GaoandR.P.Wei,Scr.Metall.19(1985)265.4R.G.SongandM.K.TsengJ.NortheasternUniversity15(1994)5(inChinese).5R.K.Viswanadham,T.S.sunandJ.A.S.Green,Metall.Trans.11A(1980)85.6J.Liu,M.KTsengandB.R.Liu.NonferrousMiningandMetallrgy5(1989)33(inChinese).7LChen,WXChen,ZHLiuandZ.Q.Hu,InFrocofthe1stNationalConfonAl-LiAlloys(Sheryang.China,1991)p.328(inChinese).8Z.HLiuL.ChenW.XChenY.X.ShaoandZ.Q.Hu,InProc.ofthe1stNationalConfonAl-LiAlloys(Shenyang,China,1991)p.334(inChinese).9R.A.OrianiandF.H.Josephic,ActaMetall.22(1974)1065.##A##BINVESTIGATION OF HYDROGEN INDUCED DUCTILE BRITTLE TRANSITION IN 7175 ALUMINUM ALLOY$$$$R.G.Seng: B.J Zhong, MG. Zeng and P. Geng(Department of Materials Scierce, Science College,Northearstern Univeisity, Shenyang 110006, China Maruscript received 4 September 1995 in revised form 20 April 1996)Abstrac:Effects of hydrogen on the mechanical properties of differently aged 7175 aluminum alloys were investigated by using cathodic H-permeation, slow strain rate tension and so on. The results indicate that both the yield stress and the percentage reduction of area decrease with increasing hydrogen charging time, and the degree of reduction decreases as aging time increases for the same hydrogen charging time.
关键词:
:hydrogen induced ductile-brittle transition
,
null
,
null
,
null
金属学报(英文版)
粒裕希停桑谩。疲希遥茫拧。停桑茫遥希樱茫希校佟。希拢樱牛遥郑粒裕桑希巍。希啤。停粒牵危牛裕遥希巍。樱校眨裕裕牛遥牛摹。粒蹋眨停桑危眨停樱桑蹋桑茫希巍。粒蹋蹋希佟。疲桑蹋停?##2##3##4##5ATOMICFORCEMICROSCOPYOBSERVATIONOFMAGNETRONSPUTTEREDALUMINUM-SILICONALLOYFILMSJ.W.Wu,J.H.FangandZ.H.Lu(NationalLaboratoryofMoleculeandBiomoleculeElectronics,SoutheastUniversity,Nanjing210096,ChinaManuscriptreceived27October1995)Abstrcat:Twodifferentsurfacemorphologycharacteristicsofmagnetronsputteredaluminumsilicon(Al-Si)alloyfilmsdepositedat0and200℃wereobservedbyatomicforcemicroscopy(AFM).Oneisirregularlyshapedgrainsputtogtheronaplane.TheotherisirregularlyshapedgrainsPiledupinspace.Nanometer-sizedparticleswithheightsfrom1.6to2.9nmwerefirstobserved.Onthebasisoftheseobservationsthegrowthmechanismofmagnetronsputteredfilmsisdiscussed.Keywords:magnetronsputtering,Al-Sialloy,surfacemorphology,atomicforcemicroscopy,filmgrowthmechanism1.IntroductionTheuseofaluminumalloys[1,2],inparticularAl-Si,isacommonfeatureinmanysinglelevelandmultilevelinterconnectionschemesadoptedinthemanufactureofmicroelectronicdevicesbecauseofseveraldesirableproperties.TheAl-Sigrainmorphology(size.geometryanddistributionofgrainsisassociatedwithstepcoverage[3],electromigration[4]andinterconnectsresistivity[5]etc..Thus,characterizationofAl-Sialloysurfacemorphologyisveryimportant,especiallywhenintegratedintensityincreasesandlinewidthsof0.3to0.5μmbecomecommon.Inthepasttwentyyears,theAl-Sialloysurfacemorphologywhichaffectsthereliabilityofmicroelectronicdeviceshasbeenwidelyinvestigatedbyscanningelectronmicroscopy(SEM),transmissionelectronmicroscopy(TEM)etc.[5-7].However,SEMandTEMhavetheirlimitationorinconvenience,forexample,theverticalresolutionofSEMisnothighandTEMneedscomplexsamplepreparation.Recently,anewgrainboundaryetchingmethodwasproposed ̄[8]whichalsoneedstroublesomechemicaletching.Atomicforcemicroscopy(AFM),sinceitsemerging,hasbecomemoreandmoreusefulinphysics,chemistry,materialsscienceandsurfacescience,becauseofitshighresolution,easeofsamplepreparationandrealsurfacetopography.Recently,discussion[9,10]waspresentedonhowAFMwillplayaroleinsemiconductorindustry.Asaresponsetothisdiscussion,weusedAFMtoinvestigateAl-SialloysurfacemorphologyandhaveobtainedsomeresultswhichcannotberevealedbySEMorTEM.ThisindicatesthatAFMisagoodcharacterizationtoolinsemiconductorindustry.2.SamplePreparationInourexperiments,aluminumwith30ppmsiliconwassputteredonsiliconsubstrateinbatchdepositionmodeAllthreefilmswiththicknessof1.6μmweredepositedusinganargonsputteringpressureof4.2×10 ̄-3Pa.TheotherdepositionparametersaredescribedinTable1.Thesubstratewascleanedusingstandardpremetallizationcleaningtechniquespriortofilmdeposition.3.ExperimentalResultsandDiscussionTheAFMmeasurementswereperformedonacommercialsystem(NanoscopeIII,DigitalInstruments,SantaBarbara).Thetipismadeofmicrofabricatedsiliconnitride(Si_3N_4)Itisattachedtoa200μmcantileverwithaforceconstantofabout0.12N/m.Beforethesurfaceofsamplewasexamined.agoodtipwithananometer-sizedprotrusionatitsendwasselectedbeforehand,whichcanbeobtainedbyimagingtheatomicstructureofmicasubstrateandagoldgrid.AtypicaloperatingforcebetweenthetipandAl-Sisamplesurfaceisoftheorderof10 ̄-8Nandallimagesweretakenatroomtemperatureinair.AtypicaltopographicviewoftheAl-SifilmsisshowninFig.1(allimagescansizeis5by5μma,bandcarerespectivelyforsample1,2,and3).FromFig.la,itcanbeseenthatirregularlyshapedgrainstiltinginvaryingdegreespileupinspace,andgroovesamongtheirregularlyshapedgrainsaredifficulttodecideatacertainarea(wedefineitascharacteristicA).Toourknowledge,onreportsonthesurfacemorphologyhavebeenpresentedbefore.InFig1b,however,irregularlyshapedgrainsassembleonaPlaneandgroovesamongtheirregularlyshapedgrainsareeasytodecide(wedefineitascharacteristicB),whichisinagreementwithmanypreviousreports[5-7].InFig.1c,bothcharacteristicA(arrowA)andcharacteristicB(arrowB)wereobserved.IndoingAFMexperiments,weselectedfivedifferentscanareastobeimagedforeachsampleandfoundthatallimagesofeachsamplearerespectivelysimilartoFig.1a,bandc.Also,wenotedthatthesurfaceofinFig.1a.WethinkthatdepositionparameterswillinfluenceAl-Sisurfacemorphology,andthetiltedgrainsmaybesusceptibletomicrocracking.Byreducingthescansizeareato2by2μm(Fig.2aandb).Weobtainedmanyidenticalresultsasdescribedabove,suchasirregularlyshapedgrainsetc.Forthefirsttime,wefoundnanometersizedparticlesonirregularlyshapedgrainsurfacewhichcannotberevealedbySEMbecausethediameterofthesenanoparticlesisabout10nmandtheheightofthesenanoparticlesisintherangeof1.6to2.9nm.Inimaging,wenotedthatrotatingthescandirectionandchangingthescanfrequencydidnotaffectthestructureofthesegrainsasshowninFig.2aandb,rulingoutthepossibilitythatscanninginfluencedtheshapeoftheseparticlesorcausedsomesimilarimagingartifacts.Also,wenotedthatthenanoparticleswerenotobservedontheslopesofthegrooves(Fig.2aandb).Thisphenomenoncanbeexplainedasfollows:thepotentialenergyattheslopeislargerthanthatelsewhere,sotheparticlesseemmorelikelytobedepositedontheseareaswithlowerpotentialenergy.Fig.2c,scansize250by250nm,isazoomtopographicimage(whiteoutlineinb).Itshowsunevendistributionofthenanoparticles.Andtheheightdifferenceofthenanoparticlesindicatesdifferentgrowingspeed.Wethinkbasedonthemorphologyofnanoparticles,thattheheightdifferenceandunevendistributionofthesenanoparticlesshowdifferentgrowingadvantageandindicatethatatomshaveenoughenergytomovetoasuitablegrowingspot.Theenergymaybefromthefollowingsources:surfacetemperaturefluctuation,stressdifferenceorcollisionbetweenhighspeedsputteredatoms.Thesenanoparticlesgoongrowingandformmanyirregularlyshapedgrains.AndtheseirregularlyshapedgrainsfurtherconnecteachotheraccordingtocharacteristicAorB,finallyformingtheAl-Sisurfacemorphology.4.ConclusionWecandrawthefollowingconclusionsfromtheabove.First,theexperimentalresultsshowedthatAFMisapowerfultooltoinvestigatethedetailsofAl-Sisurfacemorphologywhichcangreatlyenrichourknowledgeofthefilmgrowthmechanism.Second,depositionconditionsplayanimportantroleindeterminingtheAl-Sisurfacemorphology.Third,thetwoAl-Sisurfacemorphologycharacteristicsarethatirregularlyshapedgrainsassembleonaplaneandirregularlyshapedgrainstiltinginvaryingdegreespileupinspace.Fourth,forthefirsttime,nanoparticleswereobservedonirregularlyshapedgrainsurfacewhichsuggestedthatthefilmgrowthmechanismwasbyinhomogeneousnucleation.Acknowledgements-BeneficialdiscussionswereheldwithDr.ZhenandMr.Zhu.ThisworkwaspartiallysupportedbytheNationalNaturalScienceFoundationofChina.RFFERENCES||1D.pramanikandA.N.Saxena,SolidStateTechnol.26(1983)127.2D.pramanikandA.N.Saxena,SolidStateTechnol.26(1983)131.3D.pramanikandA.N.Saxena,SolidStateTechnol.33(1990)73.4S.S.IyerandC.Y.Worg,J.Appl.phys.57(1985)4594.5J.F.Smith,SolidStateTechnol.27(1984)135.6D.GerthandD.Katzer,ThinSolidFilm208(1992)67.7R.J.WilsonandB.L.Weiss,ThinSolidFilm207(1991)291.8E.G.Solley,J.H.Linn,R.W.BelcherandM.G.Shlepr,SolidStateTechnol33(1990)409I.SmithandRHowland,SolidStateTechnol.33(1990)53.10L.Peters,SemiconductorInternational16(1993)62.##61D.pramanikandA.N.Saxena,SolidStateTechnol.26(1983)127.2D.pramanikandA.N.Saxena,SolidStateTechnol.26(1983)131.3D.pramanikandA.N.Saxena,SolidStateTechnol.33(1990)73.4S.S.IyerandC.Y.Worg,J.Appl.phys.57(1985)4594.5J.F.Smith,SolidStateTechnol.27(1984)135.6D.GerthandD.Katzer,ThinSolidFilm208(1992)67.7R.J.WilsonandB.L.Weiss,ThinSolidFilm207(1991)291.8E.G.Solley,J.H.Linn,R.W.BelcherandM.G.Shlepr,SolidStateTechnol33(1990)409I.SmithandRHowland,SolidStateTechnol.33(1990)53.10L.Peters,SemiconductorInternational16(1993)62.##A##BATOMIC FORCE MICROSCOPY OBSERVATION OF MAGNETRON SPUTTERED ALUMINUM-SILICON ALLOY FILMS$$$$J.W.Wu,J.H. Fang and Z.H.Lu (National Laboratory of Molecule and Biomolecule Electronics,Southeast University,Nanjing 210096, China Manuscript received 27 October 1995)Abstrcat:Two different surface morphology characteristics of magnetron sputtered aluminumsilicon(Al-Si)alloy films deposited at 0 and 200℃ were observed by atomic force microscopy(AFM).One is irregularly shaped grains put togther on a plane.The other is irregularly shaped grains Piled up in space. Nanometer-sized particles with heights from 1.6 to 2.9 nm were first observed. On the basis of these observations the growth mechanism of magnetron sputtered films is discussed.
关键词:
:magnetron sputtering
,
null
,
null
,
null
,
null
金属学报(英文版)
茫遥伲樱裕粒蹋蹋桑冢粒裕桑希巍。希啤。疲錩(38)Ni_(39)Si_(10)B_(13) METALLIC GLASS UNDER HELIUM ION IRRADIATION##2##3##4##5CRYSTALLIZATIONOFFe_(38)Ni_(39)Si_(10)B_(13)METALLICGLASSUNDERHELIUMIONIRRADIATION$YANGQifa(ChinaInstituteofAtomicEnergy,Beijing)ZHANGGuoguang;SHENWanshui(UniversityofScienceandTechnologyBeijing)Manuscriptreceived20February1995ThecrystallizationfeaturesofFe38Hi39Si10B13metallicglassunder100keVand6μA/cm2heliumionirradiationwithdifferentdosesarereported.ItisfoundthattheFe38Ni39Si10B13metallicglasscrystallizedundertheheliumionirradiationatthetemperaturelowerthantheordinarythermalcrystallizationtemperature.ThepreferentialprecipitationphaseisFeSi,andfollowedbytheeutecticphaseα-Fe.Thecriticaldosefortheformationofheliumbubblesinthematerialisaround5x10 ̄16/cm2.Thesensitivityofcrystallizationduetothetemperaturerisingunderheliumionirradiationandthemechanismofthesequenceofprecipitatedphasearebrieflydiscussed.Keywords:Fe38Ni39Si10B13,metallicglass,crystallization,helium,ionirradiationTheblisteringorflakingoffirstwallmaterialsinducedbyheliumionbombardment,whichisrelevanttothefirstwallsurfaceerosionandplasmacontamination,isacriticalproblemtobeconsideredinfusionengineering.Becauseofthefavourablyphysical,chemicalandotherproperties,especially,thebetterresistanceofblistering,metallicglassesareexpectedtobeapromisingcandidatematerialforthefirstwall.TyagiandNanderkarstudiedsystematicallytheblisteringphenomenaofsomemetallicglassmaterialsunderheliumionandprotonbombardmentwithvariousionenergy,ioncurrentdensityanddose,andfoundthecriticaldoseforblisteringofthesematerials[1-3].However,itisverysuspiciousthatmetallicglasseswillcrystallizeunderheliumionirradiationtolosetheiramorphouscharacter,whichwilldeterioratetheirproperties.GusevaandGordeevareportedthatFe40Ni40B20metallicglassbombardedbyheliumionwithenergyof40keVandionbeamcurrentdensitiesof5-40μA/cm2partiallycrystallizedbelowitsordinarythermalcrystallizationtemperature[4].ByusingXRDexamination,itwasfoundthatα-FeandM3B,M2BandMBwereprecipitated(whereM=FeandNi)underheliumionbombardmentwith5μA/cm2and100μA/cm2ioncurrentdensitiesrespectively.Nevertheless,TyagiandNanderkarfoundthatsomemetallicglassescrystallizedandsomedidnotundersameirradiatedparameters[1-3].Consequently,itisnecessarytoinvestigatetheirradiation-assisted-crystallizationfeatureofmetallicglassesbyheliumionirradiationfortheirapplicationinfusionengineering.Inpresentexperiment,thecrystallizationfeatureofFe38Ni39Si10B13metallicglassunderheliumionirradiationwithenergy100keVandvariousdosesintherangeof5×1016/cm2to1×1018/cm2,andthedistributionofheliumbubblesinmaterialaremeasuredbyusingtransmissionelectronmicroscope(TEM)andX-raydiffraction(XRD).1.ExperimentalApproachTheas-receivedFe-Ni-Si-Bmetallicglassribbonswith10mminwidthand0.2mminthicknessweresuppliedbyBeijingInstituteofMetallurgy.Thenominalcomposition(wt%)ofthematerialisNi47.37,Fe43.91,Si5.81andB2.91fromthechemicalanalysisandthecalculatedconstituentisFe38Ni39Si10B13.TheX-raydiffractogramofas-receivedmaterialdemonstratedthattheas-receivedmaterialhasagoodamoophouscharacter.Thetheimalcrystallizationprocessoftheas-receivedmaterialwastestedbydifferentialthermalanalysis(DTA).Theordinarythermalcrystallizationtemperaturewasdeterminedtobeabout490℃.Rectangularsampleswithanareaof1×2cmanddiscsampleswith3mmindiameterwereemployedrespectivelyforXRDandTEMexperiments.ThesamplesforXRDweremechanicallypolishedtomirrorsurfaee.Ontheotherhand,formakingTEMsamples,thepiecescutfromtheribbonwerethinnedto30μmthicknessfirst,thenpunchedout3mmdiscs,electrothinnedinamixedsolutionof10%perchloricacidand90%ethanolandfinally,thediscswereionmilledtoextendthethinarea.HeliumionirradiationofsampleswascarriedoutonTS51-200/ZKionimplanterinChinaInstituteofAtomicEnergy.ThesampleswerefixedonacopperholderwhichwascooledbyF-113coolant.Thevacuumintargetwasbetterthan3×10-3Paandthescanningareaofionbeamwasabout3×7cm.Thetemperatureridingofthesamplescausedbyionbeambombardmentwasmeasuredbythermalcouple.Undertheirradiationparametersofionbeamenergy100keVandionbeamcurrentdensity6μA/cm2,thetemperaturerisingofsampleswaslowerthan200℃.Theiondosesofimplantedsampleswerechosenfrom5×10 ̄16/cm2to1×10 ̄18/cm2inpresentexperiment.AJEOL-100CXTEMoperatedat100kVwasused.Thecalculatedmeanprojectrangeandrangestragghngofheliumionwithenergy100keVinthematerialwere306.9nmand85.5nmrespectively,whichwassimulatedbycodeTRIM86.2.Results2.1CrystallizationunderionirradiationTheselectedareadiffraction(SAD)patternsofun-irradiatedandirradiatedsamplesareshowninFig.l.Fortheun-irradiatedsample,thepatterniscomposedoftwoconcentricringswhichexhibitatypicalamorphousdiffractionfeature(Fig.la).Ontheotherhand,forirradiatedsamples,agroupofnewconcentricringsappearsonthebaseofamorphousdiffractionrings,whichmeanstheoccurrenceofpartialcrystallizationandtheformationofsomenewprecipitationphasesinoriginalamorphousmaterialsbyionirradiation.Withtheincreaseofiondose,theinitialamorpohousdiffractionringsbecomefainterandtheintensitiesofdiffractionringsprodueedbyprecipitatesdevelopehigher.Itisexpectedthatthecrystallizationinsamplesincreaseswiththeincreaseiniondose.Moreover,iftheiondoseislowerthan5×10 ̄17/cm2,thepatternsshowtypicalpolycrystallinediffractionfeaturewithrandomorientationandveryfinegrains(Figs.lbandlc),butfor1×10 ̄18/cm2iondose,somebrightspotsarise(Fig.ld),thismeansthatsomerelativelargegrainsformedinsampleunderirradiation.FromtheX-raydiffractogramofthesampleirradiatedbyheliumiontodoseof5×10 ̄17/cm2,thediffractionpoaksarestillamorpohousfeatureandnonewpeaks.Itispredictedthatthecrystallizationonlyoccursintheprojectedrangeofions.2.2AnalysisofprecipitationphaseFromindexingofdiffractionringsinFig.lbandFig.lc,theprecipitatephaseisanfcccrystallinestructure.InFig.ld,anadditionalbccphaseisfound(ring3,ring5andring8).Thecalculatedlatticeparametersforprecipitatephasesundervariousiondosesareasfollows:5×1016/cm2a=0.412nm(fcc)l×1017/cm2a=0.42lnm(fcc)5×1017/cm2a=0.428nm(fcc)l×1018/cm2a=0.478nm(fcc)a=0.292nm(bcc)UsingASTMindex,itisidentifiedthatthebccphaseisα-Fe(a=0.2866nm).Todeterminethefccprecipitatephase,weinspectedallcompoundswithfcccrystallinestructurecomposedofelementsFe,Ni,SiandB,foundthatthreecompoundsFeSi(a=0.446nm),FeNi3(a=0.353nm)andFe3Si(a=0.564nm),butthemostfavourablecompoundwasFeSi.Therefore,itisassumedthatthepreferentialprecipitatephaseisFeSi,andisfollowedbytheeutectcphaseα-Feundertheheliumionirradiation.2.3HeliumbubbledistributionThemorphologiesofheliumbubblesformedbyagglomerationofimplantedheliumionsareshowninFig.2.Thesmallblackdotspresentbubblesunderbrightfieldwiththeunderfocusingoperation.FromFig.2,itisrevealedthatbubbleslowerthedensity,butinflateinthedimensionwiththeincreaseiniondose.Moreover,underthehigherdosethebubblesjoinedtogether.Fig.3plotsthechangesofdensitiesanddiametersofbubbleswiththeiondose.ItisevidentthatthecriticaldosetoformbubblesinFe38Ni39Si10B13islowerthan5×1016/cm2,whichisslightdifferentfrom1×1017/cm2reportedbyTyagi[1].3.DiscussionAstheresultsreportedbyGusevaandGordeeva[4],theheliumirradiationcantrulybringonthepartialcrystallizationinmetallicglassFe38Ni39Si10B13belowitsordinarythermalcrystallizationtemperature.GusevaandGordeevaconfirmedthattheprecipitatesinFe40Ni40B20wasα-Fephaseunderheliumionirradiationof40keVenergyand5μA/cm2currentdensity,inwhichthetemperaturerisingofthesampleswaslowerthan200℃.Howerve,inpresentexperiment,thoughα-Fephaseisdetermined,notraceofM3B,M2BandMBprecipitatephaseisobserved,whichwasreportedbyaboveauthorsunderirradiationwithenergyof40keVandioncurrentdensityof30μA/cm2.Inaddition,theprecipitationprocessinpresentexperimentissomewhatdifferentfromtheprecipitationprocessreportedbyaboveauthors,thepreferentialprecipitationphaseisFeSi,andfollowedbytheeutecticphaseα-Fe.CrystallizationofamorphousFe40Ni40B20wasnotobservedbyTyagi,whichwasthesamematerialasthatusedbyGusevaandGordeeva,undertheirradiationwith100keVionenergyand30μA/cm2ioncurrentdensity[3].Itmayrelatetothetemperaturerisingofsamplesorsomethingelse.Accordingtothecomparisonandanalysis,itmaybeconcludedthatthecrystallizationofmetallicglassesisverysensitivetothetemperaturerisinginsamplescausedbyionbeamirradiation.ThereasonofthepreferentialphasetobeFeSiandfollowedα-Femaybethatinanamorphousmaterial,themetalloidelementsshouldkeepatthetotalcontentsabove20at%,otherwisesomeelementsorcompoundswillprecipitatetoremainthebalanceofchemicalcomposition.Therefore,astheprecipitationofFeSianddeclineofSicontentsinasample,FeandNimayprecipitateasaneutecticphaseaccordingtoaboveidea.Inthisexperiment,Feprecipitatedfirstly.ThedifferenceoflatticeparametersbetweenexperimentaldataandASTMstandarddatamayresultsintheexistencesofNiandBetcandincompletecrystallizationinsample.Thegeneralviewpointforirradiation-assisted-crystallizationofmetallicglassbelowtheirthermalcrystallizationtemperatureisthedisplacementdamagesinducedbycollosion-cascadebetweenincidentionsandtargetatoms.Thedisplacementdamagesprovidethenucleatingcentresandtheirradiation-assistedmigrationincreasesthecrystallizeddrivingforce,butnodirectrelationshipbetweenheliumandcrystallization.Thegrowthofagrainiscloselyattributedtothediffusionofneighbouringatomstothegrowingnucleus,whichisreliedonthetemperatureextremely,accordingly,thecrystallizationofmetallicglassisverysensitivetothetemperaturerisingfromionbeambombardmentinanirradiatedsample.4.Summary(l)TheFe38Ni39Si10B13metallicglasswillcrystallizebelowitsordinarythermalcrystallizationtemperatureunderheliumionirradiationwith100keVenergyand6μA/cm2ionbeamcurrentdensity.(2)ThepreferentialprecipitationphaseofthemetallicglassisFeSi,andfollowedbyaneutecticphaseα-Fe.(3)Thecriticaldoseformingheliumbubblesinthemetallicglassisabout5×1016/cm2,whichisslightlylowerthanthedosereportedbyTyagi.(4)Theirradiation-assisted-crystallizaofametallicglassesisverysensitivetothetemperaturerisingcausedbyionbeambombardmentinanirradiatedsample.Acknowledgements─TheauthorswouldliketothankthecolleaguesofIonImplantationGroupinChinaInstituteof.AtomicEnergy.forhelpinginsampleirradiation,alsotoProfe
关键词:
: Fe38Ni39Si10B13
,
null
,
null
,
null
,
null