{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以Ar和H2为溅射气体,采用Si和SiO2双靶活性溅射技术实现了镶嵌纳米晶硅(nc-Si)的富硅氧化硅(SiOx)薄膜的300℃低温生长,并分析了氢气掺入对薄膜微观结构及键合特性的影响.结果表明,氢气流量比的增加导致纳米硅粒子尺寸增加,而生长速率逐渐减小.薄膜中Si-O键合结构以Si(O4)键为主,随H2流量比的增加,Si-O4-nSin(n=0,1)键密度减小,Si-O4-nSin(n=2,3)和SiH2键密度持续增加,而所对应Si-H键密度呈现先减小后增加趋势,该结果可解释为等离子体内氢原子对反应前驱物中氧的去除效应增强和氢原子与表面氧的解吸附反应几率的增加.","authors":[{"authorName":"于威","id":"4b5093ee-2ba3-420f-a2b8-7d0baae5faf9","originalAuthorName":"于威"},{"authorName":"王建涛","id":"c7aac413-d843-4819-bc8b-b791daa43244","originalAuthorName":"王建涛"},{"authorName":"李云","id":"a224b04e-a4b9-4b36-b940-4ce6ea4d21a7","originalAuthorName":"李云"},{"authorName":"郭少刚","id":"469369c5-ebd9-436a-8865-e38d72790fa8","originalAuthorName":"郭少刚"},{"authorName":"","id":"ade10b37-95b4-427f-873b-48aad26d636a","originalAuthorName":"朱海荣"},{"authorName":"傅广生","id":"7615acf0-6eba-4b76-b6c8-3d57ec0087cc","originalAuthorName":"傅广生"}],"doi":"","fpage":"1035","id":"07068aac-77e2-40b1-a369-772e8f8a03a7","issue":"6","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"1e7eb6f8-efdc-4371-8be7-fa451227d1ae","keyword":"纳米晶硅","originalKeyword":"纳米晶硅"},{"id":"56c32ca1-f2d8-4eab-9e3e-4832e2c11fd9","keyword":"富硅氧化硅","originalKeyword":"富硅氧化硅"},{"id":"83e20d18-4843-4ffe-96b0-1d90a859e429","keyword":"低温沉积","originalKeyword":"低温沉积"},{"id":"d4feb21b-1969-44d7-90a9-c91a052c610a","keyword":"微结构","originalKeyword":"微结构"}],"language":"zh","publisherId":"rgjtxb98201306008","title":"氧化硅中纳米晶硅薄膜的低温沉积及其键合特性研究","volume":"42","year":"2013"},{"abstractinfo":"综述了高分子材料自修复的各种机理:基于微胶囊和液芯纤维的第一代自修复高分子;基于类毛细血管结构的第二代自修复高分子;基于可逆共价键的分子自修复机理;基于可逆非共价键的分子自修复机理;基于纳米粒子和离聚物的自修复机理;以及外力感应型自修复机理.重点介绍了各种机理的化学过程、特点和自修复效率.最后,展望了自修复高分子材料的发展前景.","authors":[{"authorName":"王明存","id":"4387b784-faa6-412e-b804-ad8f79e15bf6","originalAuthorName":"王明存"},{"authorName":"","id":"a027a261-7e37-4310-9d20-4d1457e82074","originalAuthorName":"朱海荣"}],"doi":"","fpage":"89","id":"6336d21c-fec3-4631-8a4f-c37a75ab1c44","issue":"11","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"663706d6-d8a6-4f69-b6b8-bf5c25049920","keyword":"高分子","originalKeyword":"高分子"},{"id":"8ed0cd98-83ee-49ea-a241-1fedeb2c2f83","keyword":"自修复","originalKeyword":"自修复"},{"id":"46bb4ba3-649e-410c-914f-702823bce7b1","keyword":"机理","originalKeyword":"机理"}],"language":"zh","publisherId":"cldb201211018","title":"高分子材料自修复机理的研究进展","volume":"26","year":"2012"},{"abstractinfo":"\"砂屋\"是使用了不合格砂作为混凝土砂料的建筑物.在地震灾害中,\"砂屋\"可能造成严重的后果.须引起重视并加强管理.","authors":[{"authorName":"洪乃丰","id":"902f2b01-f969-4f02-8d6c-cf161a16672e","originalAuthorName":"洪乃丰"}],"doi":"","fpage":"426","id":"f8f8c533-2df6-4a56-b672-6c4b457df77e","issue":"7","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"235c7a6f-aead-451b-9531-256af4faaef1","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"fsyfh200807024","title":"震后反思\"砂屋\"","volume":"29","year":"2008"},{"abstractinfo":"文中阐述了上车金矿的矿山概况、矿产资源、开采条件,结合矿山实际开采情况,采用类比法、价格法(经济盈亏平衡)对生产经济技术指标进行对比分析,及时调整了矿山工业指标,达到了经济、合理利用矿产资源的目的.","authors":[{"authorName":"唐俊智","id":"5e9bc3c8-dd53-4cd8-9325-633c95343c86","originalAuthorName":"唐俊智"}],"doi":"10.3969/j.issn.1001-1277.2006.11.006","fpage":"19","id":"8194c2ad-4362-423b-a975-dddc804890d2","issue":"11","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"c1734631-b747-41c3-bfef-5d76ff8b1771","keyword":"工业指标","originalKeyword":"工业指标"},{"id":"75e42fda-8c3b-43c8-8410-f3f95a49e706","keyword":"选择论证","originalKeyword":"选择论证"},{"id":"08308e7e-96b1-4c09-848f-dcfba760e94b","keyword":"上车金矿","originalKeyword":"上朱车金矿"}],"language":"zh","publisherId":"huangj200611006","title":"上车金矿工业指标的选择论证","volume":"27","year":"2006"},{"abstractinfo":"林西金矿床位于金山金矿田的中北部,是与韧-脆性剪切带有关的石英脉型、蚀变岩型金矿床。在综合研究和利用矿区以往地质地球化学资料基础上,选取矿区40号勘探线为典型地质剖面,对该剖面坑探工程控制的Ⅰ号金矿带进行系统采样和数据分析与统计计算。利用相关分析、聚类分析、因子分析方法,确定了金矿床的原生晕组合特征。通过绘制和分析原生晕元素轴向异常分布图和叠加图、地球化学参数计算图,初步归纳了矿床构造叠加晕总体特征,并分析了矿体原生晕特征的地质意义以及对深部盲矿体预测的应用。研究认为:As与 Au关系密切, As、Sb和Hg为金矿体的前缘指示元素组合;Pb、Zn、Cu分布于矿体周围,为矿体的近矿晕指示元素组合;Mo、Mn和Co元素为矿体的尾晕元素组合;尾晕的反带异常、前缘晕与尾晕叠加等特征对深部盲矿体预测有重要指示作用。","authors":[{"authorName":"丁高明","id":"cbc1409a-9e45-46b6-bb75-db95a0195d0d","originalAuthorName":"丁高明"},{"authorName":"卢树东","id":"a2c04c96-4776-4c99-9a8e-b043f1aae1ed","originalAuthorName":"卢树东"},{"authorName":"刘国","id":"15652333-9439-409c-959a-68a073a3abde","originalAuthorName":"刘国荣"},{"authorName":"肖淳","id":"a155b016-6e42-489e-b96a-e3d229caabce","originalAuthorName":"肖淳"}],"doi":"10.11792/hj20160904","fpage":"14","id":"d8f67118-529e-436d-8123-01d216051050","issue":"9","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"0fcef0d1-3d1f-4d6e-af5d-15512a7085bb","keyword":"原生晕","originalKeyword":"原生晕"},{"id":"77fe5818-8291-4e86-a483-91a6f5b4c95c","keyword":"林西金矿床","originalKeyword":"朱林西金矿床"},{"id":"966cb335-b420-440f-b0c4-b36d5399d98b","keyword":"金山金矿田","originalKeyword":"金山金矿田"},{"id":"7e2a1521-13ac-43d6-baa7-4835389f98eb","keyword":"盲矿体预测","originalKeyword":"盲矿体预测"}],"language":"zh","publisherId":"huangj201609004","title":"江西金山金矿田林西金矿床矿体原生晕特征","volume":"37","year":"2016"},{"abstractinfo":"受河床生态环境保护的需要,可供应的建筑用河砂资源日益匮乏,海底砂已经成为我国部分沿海城市建筑用砂的重要来源.分别采用淡化砂、原状砂和河砂,对比分析了砂特性及砂混凝土的力学性能.试验研究表明,珠江口砂及盐田砂均属于级配良好的混凝土细集料,砂中所含的氯离子和少量的贝壳并不影响混凝土的工作性、抗压强度、抗折强度及弹性模量,不考虑氯离子对混凝土钢筋的腐蚀时,原状砂均也可等同于河砂使用.","authors":[{"authorName":"刘伟","id":"248c310a-d9c5-4c34-909d-0221c6a1885b","originalAuthorName":"刘伟"},{"authorName":"谢友均","id":"a01dfaeb-ae27-4a15-a85d-419e87552ad7","originalAuthorName":"谢友均"},{"authorName":"董必钦","id":"98a74a92-53e3-4ce8-bb83-dc7da0fb11c0","originalAuthorName":"董必钦"},{"authorName":"邢锋","id":"4be63209-049d-411d-a0aa-f7fb08b30118","originalAuthorName":"邢锋"}],"doi":"","fpage":"15","id":"76838501-9779-46aa-a731-88f29ba63d3d","issue":"1","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"d6a0064e-3dd3-425a-9ba2-728a791fde77","keyword":"砂","originalKeyword":"海砂"},{"id":"6ca44e15-7e54-42fa-a083-ffb3a8e42970","keyword":"混凝土","originalKeyword":"混凝土"},{"id":"7d6fc6bb-34fb-4ba0-8b49-a8514a90bdf5","keyword":"强度","originalKeyword":"强度"},{"id":"6a7ce904-ab5b-4836-ac6f-3182303be972","keyword":"弹性模量","originalKeyword":"弹性模量"}],"language":"zh","publisherId":"gsytb201401004","title":"砂特性及砂混凝土力学性能的研究","volume":"33","year":"2014"},{"abstractinfo":"LS-DYNA可以满足用户对某些材料本构关系子程序开发的要求.本文首先编制了各向同性线弹性材料本构模型子程序,计算单轴拉伸作用,得到材料子程序开发的可行性;另外主要编制了飞机风挡材料采用的具有应变率效应的非线性粘弹性-王-唐本构模型,结果能很好地对-王-唐模型进行描述,特别是应变率对该模型的影响.并用于真实风挡的计算,得到的数值结果与试验值比较吻合.","authors":[{"authorName":"冯震宙","id":"080ef325-5d8f-4493-baf2-395f9753a380","originalAuthorName":"冯震宙"},{"authorName":"王新军","id":"dbefb237-85be-4f86-ad6c-49a7fc3c44a0","originalAuthorName":"王新军"},{"authorName":"王富生","id":"1ad4e6d3-6e44-4be2-a4b4-a6a02a67cbae","originalAuthorName":"王富生"},{"authorName":"高行山","id":"c47026b5-8556-45b2-aff0-8ec452dcfe5e","originalAuthorName":"高行山"},{"authorName":"岳珠峰","id":"3ba1b48c-b919-450a-b7f0-ceced749af77","originalAuthorName":"岳珠峰"}],"doi":"10.3969/j.issn.1673-2812.2007.02.027","fpage":"269","id":"fd2e2c8d-9c37-4d2d-88a5-3819edd6ff21","issue":"2","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"ab9ca95b-98bf-4375-a3e3-afaffca62712","keyword":"非线性粘弹性本构关系","originalKeyword":"非线性粘弹性本构关系"},{"id":"17f17c9c-7394-4776-9321-b9a856ebaace","keyword":"材料子程序","originalKeyword":"材料子程序"},{"id":"5f2336c9-4355-43bf-a0aa-96f88fd1efe0","keyword":"风挡","originalKeyword":"风挡"},{"id":"f159c787-014f-46b7-ace7-1c65e7f345e6","keyword":"应变率","originalKeyword":"应变率"}],"language":"zh","publisherId":"clkxygc200702027","title":"-王-唐非线性粘弹性本构模型在有限元分析中的实现及其应用","volume":"25","year":"2007"},{"abstractinfo":"通过90天碳钢实暴露试验,观察碳钢在不同腐蚀阶段的腐蚀形貌,检测了青岛海水环境中实暴露的碳钢内锈层中的硫酸盐还原菌数量,对腐蚀机理进行了浅析。","authors":[{"authorName":"杨海洋","id":"818d03d0-447f-4e89-84fe-d835600ee10d","originalAuthorName":"杨海洋"},{"authorName":"黄桂桥","id":"3c6b67e7-2a88-4aca-9062-ca0bb3491c1b","originalAuthorName":"黄桂桥"},{"authorName":"张波","id":"b78353e6-c6af-496e-8af4-81a212774683","originalAuthorName":"张波"},{"authorName":"韩东锐","id":"524534d6-c472-40d9-a98c-650ee26469a2","originalAuthorName":"韩东锐"}],"doi":"","fpage":"712","id":"799ea727-7f63-4540-a322-569e09c977bc","issue":"8","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"25454229-4e8a-45d0-825e-2e0ad1e8af20","keyword":"碳钢","originalKeyword":"碳钢"},{"id":"3b9b21d0-7740-4211-bc4f-73b044aa52f8","keyword":"海洋环境","originalKeyword":"海洋环境"},{"id":"d464d289-87ac-4ce5-ba5e-a0aab62eb2b7","keyword":"硫酸盐还原菌","originalKeyword":"硫酸盐还原菌"}],"language":"zh","publisherId":"fsyfh201208018","title":"实环境碳钢的微生物腐蚀浅析","volume":"33","year":"2012"},{"abstractinfo":"对A3钢在模拟泥环境中进行了埋片试验和电化学试验,以研究海底管道在含硫酸盐还原菌(SRB)泥中的腐蚀行为.结果表明,A3钢在砂泥中的腐蚀速率明显高于在砂中的腐蚀速率,随温度的升高,A3钢在砂中的腐蚀速率升高;且随温度的升高、SRB和SO42-含量的增加,A3钢在砂泥中的腐蚀速率随之升高;在无菌泥中A3钢的腐蚀速率随温度升高而增大,主要是由于作为阴极去极化剂的氧的扩散速度随温度升高而增大;在有菌泥中SO42-能参与阴极去极化而加速A3钢的腐蚀.","authors":[{"authorName":"魏爱军","id":"a4e7de56-640b-40aa-912a-3f9ec1403dd9","originalAuthorName":"魏爱军"},{"authorName":"霍富永","id":"11bd45f2-48ec-45e5-84ac-815580e3bf07","originalAuthorName":"霍富永"},{"authorName":"熊相军","id":"994eeb66-8f06-4860-aba9-ae59593fee6c","originalAuthorName":"熊相军"},{"authorName":"蒋华义","id":"1c90631d-7c09-45d2-b990-79d68c0fca0a","originalAuthorName":"蒋华义"},{"authorName":"杨海龙","id":"65fcafd2-fb2a-405e-8492-b9684c765cde","originalAuthorName":"杨海龙"}],"doi":"","fpage":"99","id":"a9bdf35b-9129-411d-9874-f53a8caef080","issue":"2","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"7741dd41-3221-4abe-ae20-9e91db64cb61","keyword":"A3钢","originalKeyword":"A3钢"},{"id":"5daa3f0b-741f-487b-9eea-08743de02c62","keyword":"泥","originalKeyword":"海泥"},{"id":"dfc6487b-6bf5-4f98-98f1-02225eb77d55","keyword":"SRB","originalKeyword":"SRB"},{"id":"ae94162f-56d5-4fb4-a3d5-01880741a96a","keyword":"腐蚀","originalKeyword":"腐蚀"}],"language":"zh","publisherId":"fsyfh200902008","title":"A3钢在泥中的腐蚀行为","volume":"30","year":"2009"},{"abstractinfo":"管在停运期间,所采用的封存介质对管会造成腐蚀,影响管解封后的使用.通过模拟管的工作环境,利用极化电阻法和失重法对封存期间选用的缓蚀剂进行筛选,确定最佳缓蚀剂及最佳加注浓度.结果表明,封存介质为淡水时,HYH-1312B缓蚀剂效果最好,从缓蚀性和经济性方面考虑,HYH-1312B的最佳加注浓度为40 mg·L-1.","authors":[{"authorName":"谢协民","id":"6742de93-0ce7-4bb9-854a-e50cd075ee83","originalAuthorName":"谢协民"},{"authorName":"李晓磊","id":"7309449d-665c-47aa-99ee-809ebdbe12b8","originalAuthorName":"李晓磊"},{"authorName":"殷立云","id":"348b7ac6-a8c9-4823-bd5b-373a46263d74","originalAuthorName":"殷立云"},{"authorName":"张艺膑","id":"a139ed42-120a-4333-a00b-ed142a6839cf","originalAuthorName":"张艺膑"},{"authorName":"李强","id":"fffa1794-7b2d-4343-b4d4-e0437267500f","originalAuthorName":"李强"},{"authorName":"孙爱平","id":"68be21f6-b2c7-445c-9d1c-5e09c9b2a6ec","originalAuthorName":"孙爱平"},{"authorName":"李丹平","id":"21ce4f9d-1452-4998-8aed-93c66ceab8c3","originalAuthorName":"李丹平"}],"doi":"","fpage":"526","id":"395950cd-72ea-4c8a-824c-c88fce570939","issue":"6","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"5523165b-10fa-477d-884b-bf0814e769d7","keyword":"缓蚀剂","originalKeyword":"缓蚀剂"},{"id":"87d21e6e-3005-49eb-9179-25e10d8951ce","keyword":"极化电阻","originalKeyword":"极化电阻"},{"id":"e1a51c18-5475-4723-8c2a-9ad6e66de239","keyword":"缓蚀率","originalKeyword":"缓蚀率"}],"language":"zh","publisherId":"fsyfh201306018","title":"管管线封存期间缓蚀剂筛选","volume":"34","year":"2013"}],"totalpage":30,"totalrecord":299}